BannerHauptseite TUMHauptseite LehrstuhlMathematik SchriftzugHauptseite LehrstuhlHauptseite Fakultät

Advanced Seminar Course: Mathematics for Data Science

Organization

Date Time Topics Room
23.01.20
13:00 - 16:00
Algorithms for l1 Minimization (Zhou)
Atomic Norm as Convex Regularizer (Kratochvil)
Thresholding & Greedy Algorithms (Krymova)
02.06.020
06.02.20
13:00 - 16:00
Sparse Reconstruction from Fourier Measurements (Lehning)
Instance Optimality and Quotient Property (Hecking-Veltman)
Small-Ball Method (Beckmann)
02.06.020

Topics

  Topic Literature  
1.
Algorithms for l1 Minimization [1]Ch.15, [2]
2.
Thresholding & Greedy Algorithms [1]Ch.6.3-6.4, [3], [4]
3.
Small-Ball Method [5]
4.
Instance Optimality and Quotient Property [1]Ch.11, [6]
5.
Atomic Norm as Convex Regularizer [7]
6.
Sparse Reconstruction from Fourier Measurements [1]Ch.12, [8]Ch.1-3

Literature

[1]    S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing, Applied and Numerical Harmonic Analysis, Birkhäuser, (2013)

[2]    D. L. Donoho and Y. Tsaig, Fast solution of l1 minimization problems when the solution may be sparse, IEEE Trans. Inform. Theory, 54, pp. 4789–4812, (2008)

[3]    D. Needell and J. A. Tropp, CoSaMP: Iterative signal recovery from incomplete andinaccurate samples, Appl. Comput. Harmon.Anal., vol. 26, no. 3, pp. 301–321, (2009)

[4]    T. Blumensath, M. Davies, Iterative hard thresholding for compressed sensing. Appl. Comput.Harmon. Anal.27(3), 265–274 (2009)

[5]    G. Lecúe and S. Mendelson. Sparse recovery under weak moment assumptions. Technical report, CNRS, Ecole Polytechnique and Technion, (2014)

[6]    P. Wojtaszczyk, Stability and instance optimality for Gaussian measurements in compressed sensing. Found. Comput. Math.10, 1–13 (2010)

[7]    Chandrasekaran, V., Recht, B., Parrilo, P.A. et al. The Convex Geometry of Linear Inverse Problems, Found Comput Math (2012)

[8]    Rudelson, M. and Vershynin, R. On sparse reconstruction from Fourier and Gaussian measurements,Comm. Pure Appl. Math.,61, 1025–1045. (2008)

Contact

  Person E-Mail Büro
  Felix Krahmer  felix.krahmeremattum.de   02.10.039
  Tim Fuchs   tim.fuchsematma.tum.de 02.10.052

nach oben