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The practice of compressed sensing suffers importantly in terms of the efficiency/accuracy
trade-off when acquiring noisy signals prior to measurement. It is rather common to find
results treating the noise affecting the measurements, avoiding in this way to face the so-
called noise-folding phenomenon, related to the noise in the signal, eventually amplified
by the measurement procedure. In this paper, we present two new decoding procedures,
combining `1-minimization followed by either a regularized selective least p-powers or an
iterative hard thresholding, which not only are able to reduce this component of the origi-
nal noise, but also have enhanced properties in terms of support identification with respect
to the sole `1-minimization or iteratively re-weighted `1-minimization. We prove such
features, providing relatively simple and precise theoretical guarantees. We additionally
confirm and support the theoretical results by extensive numerical simulations, which give
a statistics of the robustness of the new decoding procedures with respect to more classical
`1-minimization and iteratively re-weighted `1-minimization. Noise folding in compressed
sensing, support identification, `1-minimization, selective least p-powers, iterative hard
thresholding, phase transitions.
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1 Introduction

Compressive sensing focuses on the robust recovery of nearly sparse vectors from the minimal amount of
measurements obtained by a randomized linear process. So far, a vast literature appeared considering
problems where deterministic or random noise is added after the measurement process, while it is not
strictly related to the signal. One typically considers model problems of the type

y = Ax+ w (1)
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where x ∈ RN is a nearly sparse vector, A ∈ Rm×N is the linear measurement matrix, y ∈ Rm is
the result of the measurement, and w is a white noise vector affecting the measurements. However,
in practice it is very uncommon to have a signal detected by a certain device, totally free from some
external noise. Therefore, it is reasonable to consider the more realistic model

y = A(x+ n) + w,

instead of (1) where n ∈ RN is the noise on the original signal.

The recent work [2, 32] shows how the measurement process actually causes the noise-folding phe-
nomenon, which implies that the variance of the noise on the original signal is amplified by a factor
of N

m , additionally contributing to the measurement noise, playing to our disadvantage in the recov-
ery phase. We refer also to the papers [34, 35], which seem to have independently reconsidered this
problem more recently. More formally, if we add to the signal x a noise vector n, whose entries have
normal distribution N (0, σn), the measurement y given by

y = A(x+ n), (2)

can be considered equivalently obtained by a measurement procedure of the form (1) (possibly with
another measurement matrix A of equal statistics) where now the vector w is composed by i.i.d.
Gaussian entries with distribution N (0, σw) and σ2

w = N
mσ

2
n.

In this stochastic context, the so-called Dantzig selector has been analyzed in [8] showing that the
recovered signal x∗ from the measurement y fulfills the following nearly-optimal distortion guarantees,
under the assumption that A satisfies the so-called restricted isometry property (compare Definition 4):

‖x− x∗‖2`2 ≤ C
2 · 2 logN ·

(
σ2
w +

N∑
i=1

min{x2
i , σ

2
w}

)
, (3)

which, for a sparse vector x with at most k-nonzero entries, reduces to the following estimate

‖x− x∗‖2`2 ≤ C2 · 2 logN ·
(
(1 + k)σ2

w

)
= C2 · 2 logN ·

(
(1 + k)

N

m
σ2
n

)
.

Therefore, the noise-folding phenomenon may significantly reduce in practice the potential advantages
of compressed sensing in terms of the trade-off between robustness and efficient compression (here
represented by the factor N

m), with respect to other more traditional subsampling encoding methods
[15].
In the following, we wish to focus on two fundamental consequences of noise folding: the loss of
accuracy in the recovery of the large entries of the original vector x, and the correct detection of their
index support.
To this end, let us introduce for r > η > 0 and 1 ≤ k < m the class of sparse vectors affected by
bounded noise,

Spη,k,r :=

x ∈ RN
∣∣#Sr(x) ≤ k and

∑
i∈(Sr(x))c

|xi|p ≤ ηp
 , 1 ≤ p ≤ 2, (4)

where Sr(x) := {i ∈ {1, . . . , N}| |xi| > r} is the index support of the large entries exceeding in absolute
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value the threshold r. This class contains all vectors for which at most 1 ≤ k < m large entries exceed
the threshold r in absolute value, while the p-norm of the other entries stays below a certain noise level.
To highlight the concrete modeling potential of such a class, in Figure 1 we show typical examples of
real-life signals from Asteroseismology falling into it, for some choice of the parameters η, k, r.

(a) Power density spectrum of the red giant can-
didate CoRoT-101034881 showing a frequency
pattern with a regular spacing [30].

(b) Amplitude spectra of solar oscillations measured by the
VIRGO instrument on SOHO. The figure shows only a por-
tion of the solar oscillation spectrum [6].

Figure 1: Examples of signals out of the class defined in (4).

Let us now informally explain how the class Spη,k,r can be crucially used to analyze the effects of
noise folding in terms of support recovery depending on the parameters η, r, k. Therefore, assume now
that x is a sparse vector with at most k nonzero entries exceeding the threshold r in absolute value
and x+ n ∈ S2

η,k,r in expectation (notice that we specified here p = 2). By the statistical equivalence
mentioned above of the model (2) and (1), we infer that the recovered vector x∗ by means of the
Dantzig selector will fulfill the following error estimate:

‖x− x∗‖2`2 ≤ C
2 · 2 logN ·

(
(1 + k)

N

m
σ2
n

)
≤ C2 · 2 logN ·

(
(1 + k)

N

m

η2

N − k

)
, (5)

where the last inequality follows by the requirement

(N − k)σ2
n = E

 ∑
i∈(Sr(x))c

|ni|2
 ≤ η2,

considering here Sr(x) as previously defined in (4). Since we assume that k � N and k+1
m ≤ 1, the

right-hand-side of (5) can be further bounded from above by

C2 · 2 logN ·
(

(1 + k)
N

m

η2

N − k

)
≤ C2

1 · 2 logN · η2.

It easily follows (and we will use similar arguments below for different decoding methods) that a
sufficient condition for the identification of the support of x, i.e., supp(x) ⊂ supp(x∗), is

C2
1 · 2 logNη2 < r2,
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or, equivalently,

η <
r

C1
√

2 logN
.

Notice that such a sufficient condition on η actually implies a rather large gap between the significant
entries of x and the noise components in n. Hence, it is of utmost practical interest to understand
how small this gap is actually allowed to be, i.e., how large η can be relatively to r, for the most used
recovery algorithms in compressed sensing (not only the Dantzig selector) to be able to have both
support identification and a good approximation of the significant entries of x.

An approach to control the noise folding, is proposed in [2]. In this case, one may tune the linear
measurement process in order to a priori filter the noise. However, this strategy requires to have a
precise knowledge of the noise statistics and to design proper filters. Other related work [21, 22, 23]
addresses the problem of designing adaptive measurements, called distilled sensing, in order to detect
and locate the signal within white noise. In this paper, we shall follow a blind-to-statistics approach
(although, as recalled below, we do not consider the scenario of impulsive noise), which does not
modify the non-adaptive measurements, and, differently from the Dantzig selector analysis in [8], we
restrict ourself to a purely deterministic setting.

First of all, we show that, unfortunately, the classical `1-minimization, but also the iteratively re-
weighted `1-minimization [10, 27], considered one of the most robust in the field, easily fails in both
the tasks mentioned above as soon as η ≈ r. The deep reason of this failure is the lack of selectivity of
these algorithms, which are designed to promote not only the sparsity of the signal x but also of the
recovered noise. This principle drawback affects necessarily also recent modifications of re-weighted
`1-minimization as appearing in [25]. This has the consequence, as a sort of balancing principle, that
the miscomputed components of the noise n, if it is not originally of impulsive nature, blow up the
inaccuracy in the detection and approximation of x. (Notice that the problem of separating sparse
signals within impulsive noise is much harder and it will not be considered within the scope of the
present paper.)
To overcome these difficulties of these popular methods, we propose a new decoding procedure, com-
bining `1-minimization and regularized selective least p-powers, which is able to reduce the noise
component affecting the signal and also to enhance the support identification. In fact, for certain
applications, such as radar [24], the support recovery can be even more relevant than an accurate
estimate of the signal values. Although the analysis and the numerical results of this new procedure
greatly outperform `1-minimization and its re-weighted iterative version, its computational complexity
becomes prohibitive in very high-dimension. For we conclude by proposing and analyzing an eventual
method, based on similar principles, which combines again a warm-up step based on `1-minimization
with a nonconvex optimization realized by the well-known iterative hard thresholding [7], and a final
correction step realized by a convex optimization. We show that this latter method performs as ro-
bustly as the previous one, but with a drastic reduction of the complexity.

The paper is organized as follows. In the next section, we concisely recall the pertinent features of
the theory of compressive sensing. In Section 3, we shall describe the limitations of `1-minimization
when noise on the signal is present, and we mention that very similarly an analogue analysis can be
performed for the iteratively re-weighted `1-minimization based on the results in [27]. Afterwards, as
an alternative, we propose the linearly constrained minimization of the regularized selective p-potential
functional, and show that certain sufficient conditions for recovery indicate significantly better perfor-
mance than the one provided by `1-minimization and iteratively re-weighted `1-minimization. Within
this paper, we measure the performance of a method by its ability to identify and approximate the
relevant entries of the original signal, where the relevant entries of a signal are the ones which exceed
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a predefined threshold r. For this purpose, we introduced the class (4). With respect to the notation
in the introduction, this class is changing the meaning of the notation x throughout the rest of the
paper and makes redundant the notation x + n, which emphasizes the fact that the noise is directly
on the signal. Section 4 recalls the main properties of a very robust and efficient algorithm to perform
the linearly constrained minimization of the regularized selective least p-powers. In Section 5, we
address the issue of the high computational cost of the regularized selective p-potential optimization
and propose, exploiting a similar selectivity principle, an alternative method based on iterative hard
thresholding. Finally, in Section 6, we report the results of extensive numerical experiments, which
we made to illustrate and support our theoretical guarantees, and the comparisons between all the
mentioned decoding methods.

2 Compressive sensing

It is possible to uniquely and robustly identify the solution x ∈ RN of the linear system Ax = y for
an arbitrary given measurement vector y ∈ Rm, if A ∈ Rm×N has rank m, and m = N . However, in
many applications, we may be either not able to take enough measurements, or interested in taking
much fewer measurements to save costs or time, i.e., m � N . The theory of compressive sensing
studies this scenario under some restrictions, and assumes that the original signal x is nearly sparse.
In this section, we recall concisely terms and principles of this theory, and we refer to some of the
known tutorials for more details [4, 9, 19, 17].

In compressive sensing, we call the matrix A the encoder which transforms the N -dimensional signal
x into to the measurement vector y ∈ Rm of dimension m� N . Further, we assume A to have rank
m from now on in this article. In practice, we do not know x and wonder if it is possible to recover it
somehow robustly by an efficient nonlinear decoder ∆: Rm → RN . As already mentioned, the theory
only works if we assume the signal x to be sparse or at least compressible.

Definition 1 (k-sparse vector). Let k ∈ N+, k ≤ N . We call the vector x ∈ RN k-sparse if

x ∈ Σk :=
{
z ∈ RN |# supp(z) ≤ k

}
where supp(z) := {i ∈ {1, . . . , N}|zi 6= 0} denotes the support of z.

In applications, signals are often not exactly sparse but at least compressible. We refer to [26] for
more details. We define compressibility in terms of the best k-term approximation error with respect
to the `p-norm, given by

‖x‖`p =

(
N∑
i=1

|xi|p
)1/p

, 1 ≤ p <∞.

Definition 2 (Best k-term approximation). Let x be an arbitrary vector in RN . We denote the best
k-term approximation of x by

x[k] := arg min
z∈Σk

‖x− z‖`p , 1 ≤ p <∞,

and the respective best k-term approximation error of x by

σk(x)`p := min
z∈Σk

‖x− z‖`p =
∥∥x− x[k]

∥∥
`p
.
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Remark 1. The best k-term approximation error is the minimal distance of x to a k-sparse vector.
Informally, vectors having a relatively small best k-term approximation error are considered to be
compressible.

Remark 2. If we define the nonincreasing rearrangement of x by

r(x) = (|xi1 |, . . . , |xiN |)
T , and |xij | ≥ |xij+1 |, j = 1, . . . , N − 1,

then

σk(x)`p =

 N∑
j=k+1

rj(x)p

 1
p

, 1 ≤ p <∞.

Alternatively, we can describe the best-k-term approximation error by

σk(x)`p =

∑
j∈Λc

|xj |p
 1

p

,

where Λ := supp(x[k]), and Λc is its complement in {1, . . . , N}.

A desirable property of an encoder/decoder pair (A,∆) is given by the following stability estimate,
called instance optimality

‖x−∆(Ax)‖`p ≤ Cσk(x)`p , (6)

for all x ∈ RN , with a positive constant C independent of x, and k the closest possible to m [12]. This
would in particular imply that by means of ∆ we are able to recover a k-sparse signal x exactly, since
in this case σk(x)`p = 0. It turns out that the existence of such a pair restricts the range of k to be
maximally of the order of m

log m
N

+1 . We refer to [5, 12, 16] for more details.

Actually, the above mentioned condition (6) can be realized in practice, at least for p = 1, by pairing
the `1-minimization as the decoder with the choice of an encoder which has the so-called Null Space
Property of optimal order k. (For realizations of the instance optimality in other `p-norms, for instance
for p = 2, one needs more restrictive requirements, see [33]. For the analysis within this paper, we
shall use (6) just for p = 1 for the sake of simplicity.)

Definition 3 (Null Space Property). A matrix A ∈ Rm×N has the Null Space Property of order k
and for positive constant γk > 0 if

‖z|Λ‖`1 ≤ γk ‖z|Λc‖`1 ,

for all z ∈ kerA and all Λ ⊂ {1, . . . , N} such that #Λ ≤ k. We abbreviate this property with the
writing (k, γk)-NSP.

The Null Space Property states that the kernel of the encoding matrix A contains no vectors
where some entries have a significantly larger magnitude with respect to the others. In particular,
no compressible vector is contained in the kernel. This is a natural requirement since otherwise no
decoder would be able to distinguish a sparse vector from zero.

Lemma 1. Let A ∈ Rm×N have the (k, γk)-NSP, with γk < 1, and define

F(y) := {z ∈ RN |Az = y},
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the set of feasible vectors for the measurement vector y ∈ Rm. Then the decoder

∆1(y) := arg min
z∈F(y)

‖z‖`1 , (7)

which we call `1-minimization, performs

‖x−∆1(y)‖`1 ≤ Cσk(x)`1 , (8)

for all x ∈ F(y) and the constant C := 2(1+γk)
1−γk .

Although the result we stated here is by now well-known, see also [31], we report its short proof
for the sake of completeness, and for comparison with the enhanced guarantees given in Theorem 4
below.

Proof. Let us denote x∗ = ∆1(y) and z = x∗ − x. Then z ∈ kerA and

‖x∗‖`1 ≤ ‖x‖`1 ,

because x∗ is a solution of the `1-minimization problem (7). Let Λ be the set of the k-largest entries
of x in absolute value. One has

‖x∗|Λ‖`1 + ‖x∗|Λc‖`1 ≤ ‖x|Λ‖`1 + ‖x|Λc‖`1 .

It follows immediately from the triangle inequality that

‖x|Λ‖`1 − ‖z|Λ‖`1 + ‖z|Λc‖`1 − ‖x|Λc‖`1 ≤ ‖x|Λ‖`1 + ‖x|Λc‖`1 .

Hence, by the (k, γk)-NSP

‖z|Λc‖`1 ≤ ‖z|Λ‖`1 + 2‖x|Λc‖`1 ≤ γk‖z|Λc‖`1 + 2σk(x)`1 ,

or, equivalently,

‖z|Λc‖`1 ≤
2

1− γk
σk(x)`1 . (9)

Finally, again by the (k, γk)-NSP

‖x− x∗‖`1 = ‖z|Λ‖`1 + ‖z|Λc‖`1 ≤ (γk + 1)‖z|Λc‖`1 ≤
2(1 + γk)

1− γk
σk(x)`1 ,

and the proof is completed.

Unfortunately, the NSP is hard to verify in practice. Therefore one can introduce another property
which is called the Restricted Isometry Property which implies the NSP. Being a spectral concentration
property, the Restricted Isometry Property is particularly suited to be verified with high probability
by certain random matrices; we mention some instances of such classes of matrices below.

Definition 4 (Restricted Isometry Property). A matrix A ∈ Rm×N has the Restricted Isometry
Property (RIP) of order K with constant 0 < δK < 1 if

(1− δK) ‖z‖`2 ≤ ‖Az‖`2 ≤ (1 + δK) ‖z‖`2 ,

for all z ∈ ΣK . We refer to this property by (K, δK)-RIP.
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Lemma 2. Let k, h ∈ N+ and K = k + h. Assume that A ∈ Rm×N has (K, δK)-RIP. Then A has
(k, γk)-NSP, where

γk :=

√
k

h

1 + δK
1− δK

.

The proof of this latter result can be found, for instance, in [17], and not being of specific relevance
for this paper we do not include it here, although it will be important at some points below to connect
the RIP to a corresponding NSP. Encoders which have the RIP with optimal constants, i.e., with
k in the order of m

log m
N

+1 exist, but, so far, as mentioned above, they can be realized exclusively by

randomization. By now, classical examples of stochastic encoders are i.i.d. Gaussian matrices [16]
or discrete Fourier matrices with randomly chosen rows [11]. Further details and generalizations are
provided in [19, 29]. In the rest of the paper we will use as prototypical cases mainly such stochastic
encoders.

A recent ansatz to increase the reconstruction accuracy of sparse vectors is iteratively re-weighted
`1-minimization [10, 27]. The idea of this approach is to iteratively solve the weighted `1-minimization

zn+1 = arg min
z∈F(y)

N∑
i=1

wni |zi|,

while updating the weights according to wni = (|zni |+ a)−1 for all i = 1, . . . , N , for a suitably chosen
stability parameter a > 0. We denote this decoder by ∆1rew, and recall the following respective
instance optimality result.

Lemma 3 ([27, Theorem 3.2]). Let A ∈ Rm×N have the (2k, δ2k)-RIP, with δ2k <
√

2−1, and assume
the smallest nonzero coordinate of x[k] in absolute value larger than the threshold

r̄ := 9.6

√
1 + δ2k

1− (
√

2 + 1)δ2k

(
σk(x)`2 +

σk(x)`1√
k

)
. (10)

Then the decoder ∆1rew performs

‖x−∆1rew(y)‖`2 ≤ 4.8

√
1 + δ2k

1 + (
√

2− 1)δ2k

(
σk(x)`2 +

σk(x)`1√
k

)
. (11)

What we recalled up to this point of the theory of compressive sensing tells us that we are able to
recover by (iteratively re-weighted) `1-minimization compressible vectors within a certain accuracy,
given by (8) or (11) respectively. If we re-interpret compressible vectors as sparse vectors which
are corrupted by noise, we immediately see that the accuracy of the recovered solution is basically
driven by the noise level affecting the vector. Nevertheless, neither inequalities (8) and (11) tell us
immediately if the recovered support of the k largest entries of the decoded vector in absolute value is
the same as the one of the original signal nor are we able to identify the large entries exceeding a given
threshold in absolute value. Section 3 addresses these issues in detail and investigates the limitations
of `1-minimization and iteratively re-weighted `1-minimization.
Furthermore, we propose a new decoder, which is able to outperform `1-minimization and iteratively
re-weighted `1-minimization in terms of simultaneously identifying the exact position of the significant
entries and reducing the noise level on the signal.
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3 Support identification

We have seen in Lemma 1 that sparse vectors can be recovered exactly by the `1–minimization decoder
∆1 if the matrix has the NSP. Moreover, a sparse signal which is disturbed by noise is recovered within
a certain accuracy depending on the best k-term approximation error. In this section, we investigate
in detail the noise level we can tolerate without loosing the ability of `1-minimization to recover the
support of the undisturbed sparse signal.

For later use, let us denote, for 1 ≤ p ≤ 2 and q such that 1
p + 1

q = 1,

κp := κp(N, k) :=

{
1, p = 1,
q
√
N − k, 1 < p ≤ 2.

(12)

3.1 The `1-minimization result

The following simple proposition shows how we can recover the support of the original signal if we
know the `1-minimizer. It turns out that the large entries of the original signal in absolute value need
to exceed a certain threshold, which depends on the noise level.

Theorem 1. Let x ∈ RN be a noisy signal with k relevant entries and the noise level η ∈ R, η ≥ 0,
i.e., for Λ = supp(x[k]), ∑

j∈Λc

|xj |p ≤ ηp, (13)

for a fixed 1 ≤ p ≤ 2. Consider further an encoder A ∈ Rm×N which has the (k, γk)-NSP, with γk < 1,
the respective measurement vector y = Ax ∈ Rm, and the `1-minimizer

x∗ := arg min
z∈F(y)

‖z‖`1 .

If the i-th component of the original signal x is such that

|xi| >
2(1 + γk)

1− γk
κp η, (14)

then i ∈ supp(x∗).

Proof. We know by (8) that

‖x∗ − x‖`1 ≤
2(1 + γk)

1− γk
σk(x)`1 . (15)

Thus, by Hölder’s inequality and the assumption (13), we obtain the estimate

‖x∗ − x‖`1 ≤
2(1 + γk)

1− γk
σk(x)`1 ≤

2(1 + γk)

1− γk
κp η. (16)

We now choose a component i ∈ {1, . . . , N} such that

|xi| >
2(1 + γk)

1− γk
κp η,
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and assume i /∈ supp(x∗). This leads to the contradiction:

|xi| = |xi − x∗i | ≤ ‖x− x∗‖`1 ≤
2(1 + γk)

1− γk
κp η < |xi|. (17)

Hence, necessarily i ∈ supp(x∗).

The noise level substantially influences the ability of support identification. Here, the noisy signal
should have (as a sufficient condition) the k largest entries in absolute value above

r1 :=
2(1 + γk)

1− γk
κp η,

in order to guarantee support identification.

3.2 The result for iteratively re-weighted `1-minimization

We are able also in the case of the iteratively re-weighted `1-minimization to show a similar support
identification result, which follows similarly from Lemma 3.

Theorem 2. Let x ∈ RN be a noisy signal with k relevant entries and the noise level η ∈ R, η ≥ 0,
i.e., for Λ = supp(x[k]), ∑

j∈Λc

|xj |p ≤ ηp, (18)

for a fixed 1 ≤ p ≤ 2. Consider further an encoder A ∈ Rm×N which has the (2k, δ2k)-RIP, with
δ2k <

√
2 − 1, the respective measurement vector y = Ax ∈ Rm, and the iteratively re-weighted

`1-minimizer x∗ := ∆1rew(y). If for all i ∈ supp(x[k])

|xi| > 9.6

√
1 + δ2k

1− (
√

2 + 1)δ2k

(
1 +

κp√
k

)
η, (19)

then supp(x[k]) ⊂ supp(x∗).

Proof. First, notice that η ≥ p

√ ∑
j∈Λc
|xj |p = σk(x)`p ≥ σk(x)`2 and κpσk(x)`p ≥ σk(x)`1 by Hölder’s

inequality. Thus, we have for all i ∈ supp(x[k]) that

|xi| > 9.6

√
1 + δ2k

1− (
√

2 + 1)δ2k

(
1 +

κp√
k

)
η ≥ 9.6

√
1 + δ2k

1− (
√

2 + 1)δ2k

(
σk(x)`p +

κp√
k
σk(x)`p

)
≥ 9.6

√
1 + δ2k

1− (
√

2 + 1)δ2k

(
σk(x)`2 +

σk(x)`1√
k

)
.

Consequently, we fulfill the conditions of Lemma 3 for which, for all i ∈ supp(x[k]), |xi| > r̄, as defined
in (10).

Assume now that there is i ∈ supp(x[k]) and i /∈ supp(x∗). By means of Lemma 3, we obtain the
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contradiction

|xi| = |xi − x∗i | ≤ ‖x− x∗‖`2 ≤ 4.8

√
1 + δ2k

1 + (
√

2− 1)δ2k

(
σk(x)`2 +

σk(x)`1√
k

)
≤ 9.6

√
1 + δ2k

1− (
√

2 + 1)δ2k

(
σk(x)`2 +

σk(x)`1√
k

)
= r̄ < |xi|. (20)

Hence, i ∈ supp(x∗).

As negative aspects ∆1rew, we notice that, in view of (20) already the conditions of Lemma 3 for the
stable convergence of the algorithm do imply support identification. Moreover, we stress that Theorem
2 requires the RIP, which is in general a stronger condition than the NSP. Again, one observes that
the noise level influences the ability of support identification. Here, the noisy signal should have the
k largest entries in absolute value above

r1rew := 9.6

√
1 + δ2k

1− (
√

2 + 1)δ2k

(
1 +

κp√
k

)
η,

in order to guarantee support identification.

In the following, we shall show that for the class Spη,k,r, as defined in (4), a smaller threshold is
required for support identification, under the sole request of the NSP (and not of the RIP).

3.3 Support identification stability in the class Spη,k,r
In this section, we present results in terms of support discrepancy once we consider two elements of
the class Spη,k,r defined in (4), having the same measurements, i.e., they are both in F(y) for y ∈ Rm.

Theorem 3. Let A ∈ Rm×N have the (2k, γ2k)-NSP, for γ2k < 1, 1 ≤ p ≤ 2, and x, x′ ∈ Spη,k,r such
that Ax = Ax′, and 0 ≤ η < r. Then

#(Sr(x)∆Sr(x
′)) ≤ (2γ2kκpη)p

(r − η)p
. (21)

(Here we denote by “∆” the set symmetric difference, not to be confused with the symbol of a generic
decoder.) If additionally

r > η(1 + 2γ2kκp) =: rS , (22)

then Sr(x) = Sr(x
′), i.e., we have unique identification of the large entries in absolute value.

Proof. As Ax = Ax′, the difference (x− x′) ∈ ker(A). By the (2k, γ2k)-NSP, Hölder’s inequality, and
the triangle inequality we have∥∥(x− x′)|Sr(x)∪Sr(x′)

∥∥
`p
≤
∥∥(x− x′)|Sr(x)∪Sr(x′)

∥∥
`1

≤ γ2k

∥∥(x− x′)|(Sr(x)∪Sr(x′))c
∥∥
`1

≤ γ2kκp
∥∥(x− x′)|(Sr(x)∪Sr(x′))c

∥∥
`p

≤ 2γ2kκpη. (23)

Now we estimate the symmetric difference of the supports of the large entries of x and x′ in absolute
value as follows: if i ∈ Sr(x)∆Sr(x

′), then either |xi| > r and |x′i| ≤ η or |xi| ≤ η and |x′i| > r. This
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implies that |x′i − xi| > (r − η). Thus we have∥∥(x− x′)|Sr(x)∆Sr(x′)

∥∥p
`p
≥
(
#(Sr(x)∆Sr(x

′))
)

(r − η)p.

Together with the inequality (23) and the non-negativity of
∥∥(x− x′)|Sr(x)∩Sr(x′)

∥∥
`p

, we obtain the

chain of inequalities

(2γ2kκpη)p ≥
∥∥(x− x′)|Sr(x)∪Sr(x′)

∥∥p
`p

≥
∥∥(x− x′)|Sr(x)∩Sr(x′)

∥∥p
`p

+
∥∥(x− x′)|Sr(x)∆Sr(x′)

∥∥p
`p

≥
(
#(Sr(x)∆Sr(x

′))
)

(r − η)p,

and therefore

#(Sr(x)∆Sr(x
′)) ≤ (2γ2kκpη)p

(r − η)p
. (24)

For the unique support identification, we want the symmetric difference between the sets Sr(x) and
Sr(x

′) to be empty. Thus the left-hand side of inequality (24) has to be zero. Since #(Sr(x)∆Sr(x
′)) ∈

N, it is sufficient to require that the right-hand side be strictly less than one, and this is equivalent to
condition (22).

Remark 3. One additional implication of this latter theorem is that we can give a bound on the
difference of x and x′ restricted to the relevant entries. Indeed, in case of unique identification of the
relevant entries, i.e., Λ := Sr(x) = Sr(x

′) we obtain, by the inequality (23), that∥∥(x− x′)Λ

∥∥
`1
≤ 2γkκpη. (25)

Notice that we replaced γ2k by γk ≤ γ2k, because now #Λ ≤ k.

Remark 4. Unfortunately, we are not able to provide the necessity of the gap conditions (14), (19),
(22) for successful support recovery, simply because we lack optimal deterministic error bounds in
general: one way of producing a lower bound would be to construct a counterexample for each algo-
rithm for which a certain gap condition is violated and recovery of support fails. Since most of the
algorithms we shall illustrate below are iterative, it is likely extremely difficult to provide such explicit
counterexamples. Therefore, we limit ourselves here to discuss the difference of r1 and rS and of r1rew

and rS. We shall see in the numerical experiments that the sufficient gap conditions (14), (19), (22)
nevertheless provide actual indications of performance of the algorithms.

• The gap between the two thresholds r1, rS is given by

r1 − rS =

(
2

(
1 + γk
1− γk

− γ2k

)
κp(N, k)− 1

)
η.

As γ2k < 1 < 1+γk
1−γk and κp(N, k) is very large for N � k, this positive gap is actually very large,

for N � 1.

• The gap between the two thresholds r1rew, rS is given by

r1rew − rS =

(
9.6

√
1 + δ2k

1− (
√

2 + 1)δ2k

(
1 +

κp√
k

)
− (1 + 2γ2kκp)

)
η.

12



Following for example the arguments in [14], we know that the matrix A having the (2k, δ2k)-

RIP implies having the (2k, γ2k)-NSP with γ2k =
√

2δ2k
1−(
√

2+1)δ2k
, which, substituted into the above

equation, yields

r1rew − rS =


(

9.6
√

1+δ2k√
k

− 2
√

2δ2k

)
κp +

[
9.6
√

1 + δ2k − (1− (
√

2 + 1)δ2k)
]

1− (
√

2 + 1)δ2k

 η.

Since 0 < δ2k <
√

2−1, we have 0 < 1− (
√

2+1)δ2k < 1, and therefore the denominator and the
right summand in the numerator are positive. The left summand of the numerator is positive and

very large as soon as k <
(

9.6
√

1+δ2k
2
√

2δ2k

)2
. Thus, even in the limiting scenario where δ2k ≈

√
2− 1,

we still have k ≤ 94, which may be considered sufficient for a wide range of applications. If one
wants to exceed this threshold a more sophisticated estimate of the above term will reveal even
less restrictive bounds on k. Thus, in general, since k and δ2k are small, also the left summand
is positive. We conclude that again the gap is very large.

Unfortunately, this discrepancy cannot be amended because the `1-minimization decoder ∆1 and the
iteratively re-weighted `1-minimization decoder ∆1rew have not in general the property

x ∈ Spη,k,r ⇒ {∆1(Ax),∆1rew(Ax)} 3 x∗ ∈ Spη,k,r.

Hence, it allows us neither to say that also the (iteratively re-weighted) `1-minimizer has a bounded
noise component ∑

i∈(Sr(x∗))c

|x∗i |p ≤ ηp,

nor to apply Theorem 3 to obtain support stability. We present several examples in Section 6, showing
these ineliminable limitations of ∆1 and ∆1rew.

3.4 The regularized selective p-potential functional and its properties

To overcome the shortcomings of methods based exclusively on `1-minimizations in 1. damping the
noise-folding and consequently in 2. having a stable support recovery, in this section, we design a new
decoding procedure which allows us to have both these very desirable properties.

Let us first introduce the following functional.

Definition 5 (Regularized selective p-potential). We define the regularized truncated p-power func-
tion W p,ε

r : R→ R+
0 by

W p,ε
r (t) =


tp 0 ≤ t < r − ε,
πp(t) r − ε ≤ t ≤ r + ε,
rp t > r + ε,

t ≥ 0, (26)

where 0 < ε < r, and πp(t) is the third degree interpolating polynomial

πp(t) := A(t− s2)3 +B(t− s2)2 + C,

with 
C = µ3,

B = µ1
s2−s1 −

3(µ3−µ2)
(s2−s1)2

,

A = µ1
3(s2−s1)2

+ 2B
3(s2−s1) .

(27)
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The parameters which appeared in the definition of the interpolating function are defined as: s1 =
(r − ε), s2 = (r + ε), µ1 = p(r − ε)p−1, µ2 = (r − ε)p, and µ3 = rp. Moreover, we define it for t < 0
as W p,ε

r (t) = W p,ε
r (−t). We call the functional SPp,εr : RN → R+

0 ,

SPp,εr (x) =

N∑
j=1

W p,ε
r (xj), r > 0, 1 ≤ p ≤ 2, (28)

the regularized selective p-potential (SP) functional.

To easily capture the function W p,ε
r , we express it explicitly for p = 2. In this case, the polynomial

has the analytic form

π2(t) :=
[t+ (r − ε)][ε(r + t)− (r − t)2]

4ε
,

and the graph of W p,ε
r is shown in Figure 2 for p = 2, r = 1, and ε = 0.4. Notice that W p,0

r is the
truncated p-power function, which is widely used both in statistics and signal processing [3, 18], and
also shown in Figure 2 for p = 2.

−2 −1.4 −1 −0.6 0 0.6 1 1.4 2
−0.5

0

1.5

Figure 2: Truncated quadratic (2-power) potential W 2,0
1 (dashed) and its regularization W 2,0.4

1 .

Remark 5. Let us notice that the functional SPp,εr is semi-convex for ε > 0, that means that there
exists a constant ω > 0 such that SPp,εr (·) + ω ‖·‖2 is convex.

Theorem 4. Let A ∈ Rm×N have the (2k, γ2k) −NSP , with γ2k < 1, and 1 ≤ p ≤ 2. Furthermore,
we assume x ∈ Spη,k,r+ε, for ε > 0, 0 < η < r + ε, with the property of having the minimal #Sr+ε(x)
within F(y), where y = Ax is its associated measurement vector, i.e.,

#Sr+ε(x) ≤ #Sr+ε(z) for all z ∈ F(y). (29)

If x∗ is such that
SPp,εr (x∗) ≤ SPp,εr (x), (30)

and
|x∗i | < r − ε, (31)

for all i ∈ (Sr+ε(x
∗))c, then also x∗ ∈ Spη,k,r+ε, implying noise-folding damping. Moreover, we have
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the support stability property

#(Sr+ε(x)∆Sr+ε(x
∗)) ≤ (2γ2kκpη)p

(r + ε− η)p
. (32)

Proof. Notice that we can equally rewrite the SPp,εr functional as

SPp,εr (z) = rp#Sr+ε(z) +
∑

i∈(Sr+ε(z))
c

|zi|pε ,

where |t|pε := W p,ε
r (t) for |t| ≤ r+ε. Here, by construction, we have |t|pε ≤ |t|p. By the assumptions (30)

and x ∈ Spη,k,r+ε, we have

rp#Sr+ε(x
∗) ≤ SPp,εr (x∗) ≤ SPp,εr (x) = rp#Sr+ε(x) +

∑
i∈(Sr+ε(x))c

|xi|pε

≤ rp#Sr+ε(x) +
∑

i∈(Sr+ε(x))c

|xi|p ≤ rp#Sr+ε(x) + ηp, (33)

and thus,

#Sr+ε(x
∗) ≤

(η
r

)p
+ #Sr+ε(x).

As η
r < 1 by assumption, the minimality property (29) yields immediately

#Sr+ε(x
∗) = #Sr+ε(x) ≤ k. (34)

Assumption (31) and again (30) yield

rp#Sr+ε(x
∗) +

∑
i∈(Sr+ε(x∗))

c

|x∗i |p = rp#Sr+ε(x
∗) +

∑
i∈(Sr+ε(x∗))

c

|x∗i |pε

≤ rp#Sr+ε(x) +
∑

i∈(Sr+ε(x))c

|xi|pε

≤ rp#Sr+ε(x) +
∑

i∈(Sr+ε(x))c

|xi|p.

By this latter inequality and (34) we obtain∑
i∈(Sr+ε(x∗))

c

|x∗i |p ≤
∑

i∈(Sr+ε(x))c

|xi|p ≤ ηp,

which implies x∗ ∈ Spη,k,r+ε. By an application of Theorem 3, we obtain (32).

Remark 6. Let us comment on the assumptions of the latter result.

(i) The assumption that x is actually the vector with minimal essential support Sr(x) among the
feasible vectors in F(y) corresponds to the request of being the ”simplest” explanation to the
data, in a certain sense we acknowledge the Occam’s razor principle;
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(ii) The best candidate x∗ to fulfill condition (30) would be actually

x∗ := arg min
z∈F(y)

SPp,εr (z) (35)

because this will make (30) true, whichever x is. However (35) is a highly nonconvex problem
whose solution is in general NP-hard [1]. The way we will circumvent this drawback is to employ
an algorithm, which we describe in details in the following section, to compute x∗ by performing
a local minimization of SPp,εr in F(y) around a given starting vector x0. Ideally, the best choice
for x0 would be x itself, so that (30) may be fulfilled. But, obviously, we do not dispose yet
of the original vector x. Therefore, a heuristic rule, which we will show to be very robust in
our numerical simulations, is to choose x0 = ∆1(y) ≈ x, i.e., we use x0 as the result of the
`1-minimization as a warm-up for the iterative algorithm described below. The reasonable hope
is that actually

SPp,εr (x∗) ≤ SPp,εr (∆1(y)) ≈ SPr,εr (x);

(iii) The assumption that the outcome x∗ of the algorithm has additionally the property |x∗i | < r − ε,
for all i ∈ (Sr+ε(x

∗))c is justified by observing that in our implementation x∗ will be the result
of a thresholding operation, i.e., x∗i = Sµp (ξi), for i ∈ (Sr+ε(x

∗))c, see (38). The particularly
steep shape of the thresholding function in the interval [r − ε, r + ε], especially for p = 2, see
Figure 3(c), makes it highly unlikely for ε sufficiently small that r− ε ≤ |x∗i | for i ∈ (Sr+ε(x

∗))c.
Actually, our numerical experiments confirm that typically this algorithm promotes solutions in
F(y) selectively characterized by a relevant gap between large components exceeding r and small
components, significantly below r.

4 Minimization of the regularized selective p-potential functional

In the latter section, we introduced the functional SPp,εr , which is nonconvex. Unluckily, this makes
its linearly constrained minimization (35), which we want to call selective least p-powers (SLP), also
nontrivial. Here, we recall a novel and very robust algorithm for linearly constrained nonconvex and
nonsmooth minimization, introduced and analyzed first in [3]. The algorithm is particularly suited
for our purpose, since it only requires a C1-regular functional. This distinguishes it from other well-
known methods such as SQP and Newton methods, which require a more restrictive C2-regularity. All
notions and results written in this section are collected more in general in [3]. Nevertheless we report
them directly adapted to our specific case in order to have a simplified and more immediate application.

4.1 The algorithm

In this section, we present the algorithm to perform the local minimization of (28) in F(y). Before
describing it, it is necessary to introduce the concept of ν-convexity, which plays a key-role in the
minimization process. In fact, to achieve the minimization of the functional SPp,εr , we use a Bregman-
like inner loop, which requires this property to converge with an a priori rate.

Definition 6 (ν-convexity). A function f : RN → R is ν-convex if there exists a constant ν > 0 such
that for all x, x′ ∈ RN and φ ∈ ∂f(x), ψ ∈ ∂f(x′)

〈φ− ψ, x− x′〉 ≥ ν
∥∥x− x′∥∥2

`2
, (36)

where ∂f is the subdifferential of the function f .
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The starting values x0 = x(0,0) ∈ RN and q(0,0) ∈ Rm are taken arbitrarily. For a fixed scaling
parameter λ > 0 and an adaptively chosen sequence of integers (L`)`∈N, we formulate

Algorithm 1 SLP

while ‖x`−1 − x`‖`2 ≤ TOL do
x(`,0) = x`−1 := x(`−1,L`−1)

q(`,0) = q`−1 := q(`−1,L`−1)

for k = 1, . . . , L` do
x(`,k) = arg minx∈RN

(
SPp,εω,x`−1

(x)− 〈q(`,k−1), Ax〉+ λ ‖Ax− y‖2`2
)

q(`,k) = q(`,k−1) + 2λ(y −Ax(`,k))
end for

end while

The reader can notice that the functional SPp,εω,x`−1
, which appears in the algorithm, has not been

yet introduced. Indeed, a modification to the functional SPp,εr must be introduced in order to have
ν−convexity, which is necessary for the convergence of the algorithm. It is defined as

SPp,εω,x′(x) := SPp,εr (x) + ω
∥∥x− x′∥∥2

`2
,

where ω is chosen such that the new functional is ν−convex. The finite adaptively chosen number of
inner loop iterates L` is defined by the condition

(1 + ‖q`−1‖`2)
∥∥Ax(`,L`) − y

∥∥
`2
≤ 1

`α
,

for a given parameter α > 1, which in our numerical experiments will be set to α = 1.1. We refer
to [3, Section 2.2] for details on the finiteness of L` and for the proof of convergence of Algorithm 1
to critical points of SPp,εr in F(y). According to Remark 6 (ii), and as we will empirically verify in
our numerical experiments reported in Section 6, this algorithm finds critical points (hopefully close
to a global minimizer) with the desired properties illustrated in Theorem 4, as soon as we select the
starting point x0 by an appropriate warm-up procedure.

Algorithm 1 does not yet specify how to minimize the convex functional(
SPp,εω,x`−1

(x)− 〈q(`,k−1), Ax〉+ λ ‖Ax− y‖2`2
)
,

in the inner loop. For that we can use an iterative thresholding algorithm introduced in [3, Section
3.7], inspired by the previous work [18] for the corresponding unconstrained optimization of regular-
ized selective p-potentials. This method ensures the convergence to a minimizer and is extremely agile
to be implemented, as it is based on matrix-vector multiplications and very simple componentwise
nonlinear thresholdings.

By the iterative thresholding algorithm, we actually equivalently minimize the functional

SPp,εω,x′(x, q) = SPp,εω,x′(x) + λ ‖Ax− (y + q)‖2`2 ,

where we set λ = 1
2 only for simplicity. The thresholding functions Sµp we use are defined in [3, Lemma
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3.15] and, for the relevant case p = 2, it has the analytic form

Sµ2 (ξ) :=



ξ

1 + µ
|ξ| < (r̄ − ε)(1 + µ),

4ε

3µ

(
1 +

µ

4ε
(2ε+ r̄)−

√
Γ(ξ)

4

)
(r̄ − ε)(1 + µ) ≤ |ξ| ≤ r + ε,

ξ |ξ| > r̄ + ε,

(37)

where

Γ(ξ) := 4

(
1 +

( µ
4ε

)2
(2r̄ + ε)2 +

µ

2ε
(2ε+ r̄)− 3µ

2ε
ξ

)
.
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Figure 3: The Lipschitz continuous thresholding functions Sµ1 , Sµ3/2, and Sµ2 , with parameters p =

1, 3/2, and 2, respectively, and r = 1.5, µ = 5, ε = 0.3.

Note that in case p 6= 2 the only part that varies is the one for |ξ| < (r̄ − ε)(1 + µ) because the
remaining ones do not depend on p. We show in Figure 3 the typical shapes of these thresholding func-
tions for different choices of p ∈ {1, 3/2, 2}. By means of these thresholding functions, the minimizing
algorithm in the inner loop is given by the componentwise fixed point iteration, for n ≥ 0,

xn+1
i = Sµp

({
1

2

[
(I − 1

2
A∗A) + (1− ω)I

]
xn +

1

2
A∗(y + q) + ωx′

}
i

)
,

i = 1, . . . , N. (38)
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We refer to [3, Theorem 3.17] for the convergence properties of this algorithm.

To summarize, Algorithm 1 can be realized in practice by nesting three loops. One external loop
makes slowly vanishing the quadratic convexification, the second external loop updates the Lagrange
multipliers q(`,k) for a fixed quadratic convexification, and the final inner loop implements (38).

5 Selectivity principle

In Section 3, we showed a certain superiority of the regularized selective least p-powers (SLP) in
terms of support identification and damping noise-folding. These theoretical results are supported
further below in Section 6 by extensive numerical results. However, the realization of the algorithm
SLP described above turns out to be computationally demanding as soon as the dimension N gets
large. Since the computational time is a crucial point when it comes to practical applications, we shall
introduce in this section another and more efficient approach based on the same principles to obtain
equally good support identification results. The investigations in Section 3 reveal some weakness of
the sparsity concept:
The decoders based on `1-minimization and iteratively re-weighted `1-minimization prefer sparse solu-
tions and have the undesirable effect of sparsifying also the noise. Thus all the noise may concentrate
on fewer entries which, by a balancing principle, may eventually exceed in absolute value the smallest
entries of the actual original signal. This makes it impossible to separate the relevant entries of the
signal from the noise by only knowing the threshold r which bounds the relevant entries from below.
On the contrary, SLP follows a selectivity principle, where the recovery process focuses on the extrac-
tion of the relevant entries, while uniformly distributing the noise elsewhere. We want now to export
this latter mechanism to formulate the method described below.

In the following, we will show that the very well known iterative hard thresholding [7] shows similar
support identification properties as SLP while being very efficient in terms of computational time.
This method iteratively computes

xn+1 := H√τ
(
xn +AT (y −Axn)

)
, (39)

where

(H√τ (z))i :=

{
z if |z| >

√
τ ,

0 else,
,

for τ ≥ 0. It is converging to a fixed point xIHT fulfilling

xIHT := H√τ
(
xIHT +AT (y −AxIHT)

)
, (40)

which is a local minimizer of the functional

J0(x) := ‖Ax− y‖2`2 + τ# supp(x),

see [7, Theorem 3] for details. One immediately observes that iterative hard thresholding has a very
selective nature: The computed fixed point xIHT is a vector with an unknown number, although
expected to be small, of non-zero entries whose absolute value is above the threshold

√
τ . In the

following, we show under which conditions this method is able to exactly identify the support of the
relevant entries of the original vector x.
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Theorem 5. Assume A ∈ Rm×N to have the (2k, δ2k)-RIP, with δ2k < 1, ‖A‖ ≤ 1, and define
β(A) > 0 such that

sup
i∈{1,...,N}

|ATi z| ≥ β(A) ‖z‖`2 , for all z ∈ Rm,

where Ai are the columns of the matrix A. Let x ∈ Spη,k,r, for a fixed 1 ≤ p ≤ 2, and y = Ax the
respective measurements. Assume further

r > η

(
1 +

1

1− δ2k

(
1 +

1

β(A)

))
, (41)

and define τ such that

η <
√
τ <

r − η
1−δ2k

1 + 1
(1−δ2k)β(A)

. (42)

Let xIHT be the limit of the iterative hard thresholding algorithm (39), and thus fulfilling the fixed point
equation (40). Further, we assume

J0(xIHT) ≤ J0(x|Sr(x)), (43)

then we have that Λ := Sr(x) = supp(xIHT), and

|xi − xIHT
i | < r −

√
τ , for all i ∈ Λ. (44)

Proof. Assume # supp(xIHT) > #Sr(x) = k. By (43), we have that

0 < # supp(xIHT)−# supp(x|Sr(x))

= # supp(xIHT)−#Sr(x)

≤ 1

τ

(∥∥A (x|Sr(x)

)
− y
∥∥2

`2
−
∥∥AxIHT − y

∥∥2

`2

)
≤ 1

τ

∥∥A (x|Sr(x)

)
− y
∥∥2

`2

=
1

τ

∥∥A (x|(Sr(x))c
)∥∥2

`2
≤ 1

τ
‖A‖2

∥∥x|(Sr(x))c
∥∥2

`2
≤ η2

τ
< 1,

where the last inequality follows by (42). Since (# supp
(
x|Sr(x)

)
−# suppxIHT) ∈ N, the upper in-

equality yields to a contradiction.

Thus # supp(xIHT) ≤ #Sr(x) = k and therefore xIHT and x|Sr(x) are both k-sparse, and
(
xIHT − x|Sr(x)

)
is 2k-sparse. Under our assumptions we can apply [7, Lemma 4] to obtain

∥∥AxIHT − y
∥∥
`2
≤
√
τ

β(A)
. (45)

In addition to this latter estimate, we use the RIP, the sparsity of xIHT − x|Sr(x), and (42) to obtain
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for all i ∈ {1, . . . , N} that

|
(
x|Sr(x)

)
i
− xIHT

i | ≤
∥∥x|Sr(x) − xIHT

∥∥
`2
≤

∥∥A(x|Sr(x) − xIHT)
∥∥
`2

1− δ2k

≤

∥∥A(x− xIHT)
∥∥
`2

+
∥∥A (x|(Sr(x))c

)∥∥
`2

1− δ2k

≤

∥∥y −AxIHT
∥∥
`2

+
∥∥A (x|(Sr(x))c

)∥∥
`2

1− δ2k

≤
√
τ

β(A) (1− δ2k)
+

η

1− δ2k
< r −

√
τ .

Assume now that there is ĩ ∈ N such that ĩ ∈ Sr(x) and ĩ /∈ supp(xIHT). But then we would also have
|xĩ−xIHT

ĩ
| = |xĩ| > r, which leads to a contradiction. Thus, we have equivalently Sr(x) ⊂ supp(xIHT).

In addition to # supp(xIHT) ≤ #Sr(x), this concludes the proof.

Remark 7. Let us discuss some of the assumptions and implications of this latter result.

(i) Since iterative hard thresholding is only computing a local minimizer of J0, condition (43) may
not be always fulfilled for any given initial iteration x0. Similarly to the argument in Remark 6
(ii), using the `1-minimizer as the starting point x0, or equivalently choosing the vector x0 as
composed of the entries of ∆1(Ax) exceeding

√
τ in absolute value, we may allow us to approach

a local minimizer which fulfills (43).

(ii) Condition (41) is comparable to the one derived in (22). If A is “well-conditioned”, i.e., we have
that (1− δ2k) ∼ 1, and β(A) ∼ 1, then

1 +
1

1− δ2k

(
1 +

1

β(A)

)
∼ 3.

Although we are able to exactly identify the support Λ by means of Theorem 5, we only have the
very poor error estimate (44) of the relevant part of the signal. The reason why we cannot obtain an
estimate as good as the one in Remark 3 is that the conditions xIHT ∈ Spη,k,r, and Ax = AxIHT to

apply Theorem 3 are in general not fulfilled. Hence an additional correction to xIHT is necessary. As
we now dispose of the support Λ = Sr(x), a natural approach is to seek for an additional vector x′

which is the solution of

min
z∈Rn

‖Az − y‖2`2
s.t. ‖zΛc‖`p ≤ η, (46)

|zi| ≥ r, for all i ∈ Λ.

Since the original signal x fulfills Ax− y = 0, and x ∈ Spη,k,r, it is actually a solution of problem (46).
Thus, we conclude that for any minimizer x′ of problem (46) the objective function equals zero, thus
‖Ax′ − y‖`2 = 0, and we conclude Ax = Ax′ and x′ ∈ Spη,k,r as well. The optimization (46) is in general

nonconvex, but, luckily, we can easily recast it in an equivalent convex one: Since |xi−xIHT
i | < r−

√
λ,

and |xi| > r, we know that the relevant entries of x and xIHT have the same sign. Since we are searching
for solutions which are close to x, the second inequality constraint becomes sign(xIHT

i )zi ≥ r, for all
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i ∈ Λ. Together with the equivalence of `2- and `p-norm, we rewrite problem (46) as

min
z∈Rn

1

2
zT (ATA)z − yTAz

s.t. zTP0z − (N − k)
1− 2

p η2 ≤ 0, (47)

zTPjz − (sign(xIHT
ij )eij )

T z + r ≤ 0, for all ij ∈ Λ , j = 1, . . . ,#Λ,

where P0 ∈ RN×N is defined componentwise by

(P0)r,s :=

{
1 if r = s ∈ Λ

0 else
,

and Pj = 0, j = 1, . . .#Λ. Since ATA, P0, and Pj , j = 1, . . . ,#Λ, are semi-definite, problem (47) is a
convex quadratically constrained quadratic program (QCQP) which can be efficiently solved by standard
methods, e.g., interior point methods [28]. Since we combine here three very efficient methods (`1-
minimization, iterative hard thresholding, and a QCQP), the resulting procedure is much faster than
the computation of SLP while, as we will show in the numerics, keeping similar support identification
properties.

6 Numerical results

The following numerical simulations provide empirical confirmation of the theoretical observations
in Section 3 and Section 5. In particular, we want to show that SLP and IHT, initialized by the
`1-minimizer as a starting value, are very robust and provide a significantly enhanced rate of recovery
of the support of the unknown sparse vector as well as a better accuracy in approximating its large
entries, whenever limiting noise, i.e., η ≈ r, is present on the signal.

In the previous sections we provided a very detailed description of the parameter choice for the
concrete implementation of SLP and IHT, which depends in a rather explicit way on the threshold
parameter r > 0 and it is independent of the dimensionalities N,m, k of the problem. Instead, it
turns out to be extremely hard to tune the parameter δ, appearing in [10, 27] as the `2-norm residual
discrepancy, in order to obtain the best performances for the iteratively re-weighted `1-minimization
(IRW`1) in terms of support identification and accuracy in approximating the large entries of the
original vector. In the papers [10, 27] the authors indicated δ2 = σ2(m+ 2

√
2m), depending on m, as

the best parameter choice for ameliorating the discrepancy in `2-norm between original and decoded
vector with respect to the sole `1-minimization. However, in our experiments we found out that for
the two purposes mentioned above a much smaller δ has to be chosen. The stability parameter a,
which avoids the denominator to be zero in the weight updating rule seems to have instead no strong
influence, and it is set to 0.1 in our experiments. We executed 8 iterations of IRW`1 as a reasonable
compromise between computational effort and accuracy.

We also consider as one of the test methods `1-minimization, where we substituted the equality
constraint Ax = y with an inequality constraint which takes into account the noise level, folded from
the noise on the signal though; thus

‖Ax− y‖`2 ≤ ‖An‖`2 ≤ δ.

In this constraint, we used the same parameter δ as for IRW`1.

As we shall argue in detail below, the following numerical tests indicate that `1+IHT is much
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faster and usually more robust than `1+SLP, and that both of them perform much better than `1-
minimization and IRW`1 in terms of support recovery and accuracy in approximating the large entries
in absolute value of the original signal.
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Figure 4: The results of the `1-minimization and SLP are shown in Subfigure 4(a) and 4(b) respec-
tively. The two decoders are intended to recover the original signal (o), starting from the
measurement of the noisy signal (·). The output of the two processes is represented by (+).
In this case the starting value for both minimizations is x0 = 0.

Advantages of SLP with respect to `1-minimization We shall start the discussion on numerical
experiments with a comparison between the `1-minimization and SLP for one typical example reported
in Figure 4. Although the setting of the two methods is the same, the results are very different: SLP-
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minimization can recover the signal with a very good approximation of its large entries in absolute
value and a significant reduction of the noise level, while `1-minimization may approximate the signal
in a bad way, due to the amplification of the noise. For instance, it is evident in Subfigure 4(a) that
|x`1(13)| < |x`1(24)| gives a wrong information about the location of the relevant entries, mismatching
them with the noise. However, in this particular example, we were lucky to choose the right starting
value for SLP. Due to its nonconvex character, in general SLP is computing a local minimizer, which
might be far away from the original signal.

Choosing `1-minimization as a warm up In Section 4, we mentioned that the algorithm, which
minimizes the functional SPp,εr , finds only a critical point, so the condition SP2,ε

r (x∗) ≤ SP2,ε
r (x)

(30) used in the proof of Theorem 4 may not be always valid. In order to enhance the chance of
validity of this condition, the choice of an appropriate starting point is crucial. As we know that the
`1-minimization converges to its global minimizer with at least some guarantees given by Theorem 1,
we use the result of this minimization process as a warm up to select the starting point of Algorithm
1. In the following, we distinguish between SLP which starts at x0 = 0 and `1+SLP which starts at
the `1-minimizer.

In Figure 5, we illustrate the robustness of `1+SLP (bottom left subfigure) in comparison to the
`1-minimization based methods and SLP starting at 0. Here, SLP converged to a feasible critical point,
but it is quite evident that the decoding process failed since the large entry at position 83 (signal) was
badly recovered and even the entry at position 89 (noise) is larger. If we look at the `1-minimization
result (top left subfigure) or the `1-minimization with inequality constraint (top right subfigure), the
minimization process brings us close to the solution, but the results still significantly lack accuracy. By
`1+SLP (center left subfigure) we obtain a good approximation of the relevant entries of the original
signal and we get a significant correction and an improved recovery. Also IRW`1 improves the result
of `1-minimization significantly, but still approximates the large entries worse than `1+SLP. Although
the difference is minor, we observe another important aspect of IRW`1: the noise part is sparsely
recovered, while `1+SLP distributes the noise in a more uniform way in a much smaller stripe around
zero. This drawback of IRW`1 can be crucial when it comes to the distinction of the relevant entries
from noise.

Massive computations The previously presented specific examples in support of our new decoding
strategies are actually typical. In order to support this work with even more impressive and convincing
evidences, we present some statistical data obtained by solving series of problems. We decided to fix
the parameters in order to have the most coherent data to be analyzed; in particular, we set N = 100,
m = 40, r = 0.8, k = 1, . . . , 7, and η = 0.75. The vector n is composed of random entries with normal
distribution and then it is rescaled in order to have ‖n‖`2 = η. Figures 6, 7, and 8 report the results
obtained considering 30 different i.i.d.Gaussian encoding matrices while Figures 9, 10, and 11 used 30
random subsampled cosine transformation encoding matrices. In the following, we use x∗ generically
for the decoded vector of any method.

Figure 6 reports the first part of the statistics which we have collected for the Gaussian matrices. We
start commenting the subfigures clockwise. The first subfigure, on the upper-left, represents the mean
value of the error between the exact signal and the decoded one ‖x− x∗‖`2 . For `1+SLP, `1+IHT,
and IRW`1 the absolute `2-norm discrepancy between original and decoded vector seems to be stable
and independent of the number k of large entries. These methods outperform `1-minimization; IRW`1
performs slightly better. We also observe that the choice of the starting point is crucial for SLP and
IHT.
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Figure 5: The figure reports the results of five different decoding processes (+) of the same problem
where the circles (o) represent the original signal and the points (·) represent the original
signal corrupted by the noise.
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Figure 6: The columns refer to the different results of `1-minimization (dark blue), SLP (blue), `1+SLP
(cyan), `1-minimization with inequality constraint (yellow), IRW`1 (orange), and `1+IHT
(brown). In the Noise error subfigure the white column in the background represents the
noise level. On the x-axis the different values of k are displayed and each column is the mean
of the results given by 30 trials. The results were obtained by Gaussian matrices.

The second subfigure is the mean value of the noise level and we can see exactly what we inferred
looking at Figure 5: `1-minimization returns a larger noise level with respect to all the other methods,
except SLP; and IRW`1 has the best noise reduction property.

The third is the mean computational time, presented in logarithmic scale. All tests were imple-
mented and run in Matlab R2013b in combination with CVX [13, 20], to solve the `1-minimization
with equality and inequality constraint, its iteratively re-weighted version, and the QCQP. We ob-
serve that SLP and `1+SLP are extremely slow. However, in comparison, the good starting point for
SLP provides an advantage in terms of computational time. IHT has a computational complexity in
between `1-minimization and IRW`1.

The fourth plot reports the mean value of the discrepancy between noise level and the large entries
of the signal, thus min

i∈Sr(x)
|x∗i | − max

i∈Sr(x)c
|x∗i |. This plot shows how good the small entries are distin-

guished from the large ones in absolute value. We see that `1+SLP and `1+IHT perform best, which
again is a result of their non-sparse noise recovery.
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Figure 7: The subfigures represent the error on the relevant entries and the support identification
property by knowledge of k. For more details on the displayed data we refer to the caption
of Figure 6. The results were obtained by Gaussian matrices.

In Figure 7, we report the histogram of the mean-value of the errors on the relevant entries: the

quantities on the left subfigure are computed as the mean values of
∥∥∥xSr(x) − x∗Sr(x)

∥∥∥
`2

where we sup-

pose to know the k largest entries of the original signal. The right subfigure shows how often the k
largest entries of x∗ coincided with Sr(x). Notice that there might be entries below the threshold r
among the k largest entries of x∗. We conclude that, knowing the number of large entries, IRW`1,
`1-minimization, `1+SLP, and `1+IHT recover the support with nearly 100% success. In addition,
`1+SLP approximates best the magnitudes of the relevant entries.
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Figure 8: The subfigures represent the error on the relevant entries and the support identification
property by knowledge of r. For more details on the displayed data we refer to the caption
of Figure 6. The results were obtained by Gaussian matrices.

In Figure 8 we compute again the mean-value of the relevant entries, but this time without the
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knowledge of k but the knowledge of r and therefore Sr(x
∗): the quantities on the left subfigure are

the mean values of
∥∥x|Sr(x∗) − x∗|Sr(x∗)∥∥`2 . In the right subfigure we attribute a positive match in

case Sr(x
∗) = Sr(x) so that the relevant entries of x∗ coincide with the ones of the original signal. By

our theory, we expect `1+SLP and `1+IHT to produce a high rate of success of correctly recovered
support. Actually this is confirmed by the experiments: Both methods do a very accurate recovery,
as it gives us almost always 100% of the correct result while the other methods perform worse.

Figures 9, 10, and 11 represent the same statistical data reported respectively in the Figures 6, 7,
and 8 but using random subsampled cosine transformation encoding matrices. Without describing the
result in detail, we state that they are very similar for these problems as well.
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Figure 9: The subfigures represent the errors, the computation time, and the separation of the com-
ponent. For more details on the displayed data we refer to the caption of Figure 6. The
results were obtained by randomly subsampled cosine transformation encoding matrices.

Phase transition diagrams To give an even stronger support of the results in the previous paragraph,
we extended the results of Figure 8 to a wider range of m and k. In Figure 12, we present phase
transition diagrams of success rates in support recovery for `1-minimization, IRW`1, `1+SLP, and
`1+IHT in presence of nearly maximally allowed noise, i.e., 0.8 = r > η = 0.75.

To produce phase transition diagrams, we varied the dimension of the measurement vector m =
1, . . . , N with N = 100, and solved 20 different problems for all the admissible k = #Sr(x) =
1, . . . ,m. We colored black all the points (m, k), with k ≤ m, which reported 100% of correct support
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Figure 10: The subfigures represent the error on the relevant entries and the support identification
property by knowledge of k. For more details on the displayed data we refer to the caption of
Figure 6. The results were obtained by random subsampled cosine transformation encoding
matrices.
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Figure 11: The subfigures represent the error on the relevant entries and the support identification
property by knowledge of r. For more details on the displayed data we refer to the caption of
Figure 6. The results were obtained by random subsampled cosine transformation encoding
matrices.

identification, and gradually we reduce the tone up to white for the 0% result. The level bound
of 50% and 90% is highlighted by a magenta and red line respectively. A visual comparison of
the corresponding phase transitions confirms our previous expectations. In particular, `1+SLP and
`1+IHT very significantly outperform `1-minimization in terms of correct support recovery. The
difference of both methods towards IRW`1 is less significant but still important. In Figure 13, we
compare the level bounds of 50% and 90% among the four different methods. Observe that the 90%
probability bound indicates the largest positive region for `1+IHT, followed by `1+SLP, and only
eventually by IRW`1, while the bounds are much closer to each other in the case of the 50% bound.
Thus, surprisingly, `1+IHT works in practice even better than `1+SLP for some range of m, and offers
the most stable support recovery results.
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Figure 12: Phase transition diagrams. The black area represents the couple (m, k) for which we had
100% of support recovery. The results of (a) `1-minimization, (b) `1+SLP, (c) IRW`1, and
(d) `1+IHT are reported. Note that the area for k > m is not admissible. The red line
shows the level bound of 90% of support recovery, and the magenta line 50% respectively.
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Figure 13: Comparison of phase transition diagrams for `1-minimization (dark blue, dotted), `1+SLP
(red), IRW`1 (green, dash-dotted), and `1+IHT (magenta, dashed). The level bound of
50% and 90% as it is displayed in Figure 12 is compared in (a) and (b) respectively.
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Harmon. Anal. Birkhäuser, Boston, 2013.

[20] M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In V. Blon-
del, S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Control, Lecture
Notes in Control and Information Sciences, pages 95–110. Springer-Verlag Limited, 2008.
http://stanford.edu/∼boyd/graph dcp.html.

[21] J. Haupt, R. Baraniuk, R. Castro, and R. Nowak. Compressive distilled sensing: Sparse recovery
using adaptivity in compressive measurements. In Proceedings of the 43rd Asilomar conference
on Signals, systems and computers, Asilomar’09, Piscataway, NJ, USA, 2009. IEEE Press.

[22] J. Haupt, R. Baraniuk, R. Castro, and R. Nowak. Sequentially designed compressed sensing. In
Proc. IEEE/SP Workshop on Statistical Signal Processing, 2012.

[23] J. Haupt, R. Castro, and R. Nowak. Distilled sensing: Adaptive sampling for sparse detection
and estimation. IEEE Transactions on Information Theory, 57(9):6222–6235, 2011.
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