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Abstract We develop a reliablea posteriorianisotropic �rst order estimator for the
numerical simulation of the Francfort and Marigo model of brittle fracture, after
its approximation by means of the Ambrosio-Tortorelli variational model. We show
that an adaptive algorithm based on this estimator reproduces all the previously ob-
tained well-known benchmarks on fracture development withparticular attention
to the fracture directionality. Additionally, we explain why our method, based on
an extremely careful tuning of the anisotropic adaptation,has the potential of out-
performing signi�cantly in terms of numerical complexity the ones used to achieve
similar degrees of accuracy in previous studies.

1 Introduction

A variational formulation for the evolution of the fracturesurface in a brittle, lin-
early elastic solid was proposed by Francfort and Marigo in [19]. The main feature
of this model is that there is no prede�ned crack, i.e., the crack is able to propagate
in the material without any constraint, driven only by elastic forces. Bourdin et al.
[7] addressed the numerical approximation of the solution of the fracture model by
Francfort and Marigo by �rst approximating it via the Ambrosio-Tortorelli varia-
tional model. Then, an extremely �ne discretization is considered to be able to cap-
ture the fracture path and its expected directional developments, independently of
the intrisic anisotropies of the a priori prescribed mesh. This technique proved to be
very stable not only in the case of anti-plane shear, but alsoin the more challenging
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situation where plane-strain is considered, capturing thephysically expected crack
paths and directionalities. However, the cost of an extremely �ne discretization to
render the material numerically homogenous is enormous, leading to the quest for
possible alternative techniques based on adaptive strategies, which can break the
ambiguity of”the crack following the mesh or the mesh following the crack” . In the
work of Chambolle et al. [10], an anisotropic adaptive �niteelement method was
presented for the simulation of the model of Francfort and Marigo in the anti-plane
shear case. The adaptive re-meshing is, however, based on a local approximation of
the Hessian of the solution, which, unfortunately, may lackthe expected regularity.
In the approach of Süli et al. [8], the adaptivity is driven exclusively by ana posteri-
ori �rst order estimator, but only isotropic mesh re�nement wasconsidered. In our
recent work [4], we tried to combine these two previous approaches, designing an
appropriatea posteriorianisotropic �rst order estimator, leading to mesh coarsen-
ing far from the fracture and �ne mesh elements exclusively very close to the crack
path. Again this new method resulted being very ef�cient andeffective, producing
stable and realistic results for some test cases where the force applied to the domain
is orthogonal to the domain itself. In this work, we study andpresent numerical re-
sults in the case the fracture is induced by a plane-strain. These tests play a key role
in validating the reliability and the applicability of anisotropic mesh adaptation in
the context of quasi-static crack path detection. Indeed, for assessing the quality of
our results we can count on previous precise studies of the behaviour of the fracture,
both from numerical and physical viewpoints [2, 7].
The numerical experiments in Sect. 4 show that the proposed method is very stable
and it allows us to reproduce all the previously obtained predictions on fracture de-
velopment, in particular its directionality features. Additionally, we expect that our
method, based on an extremely careful tuning of the anisotropic adaptation, outper-
forms signi�cantly the ones used to achieve similar degreesof accuracy in previous
studies. Unfortunately, the only reference with which we can compare the computa-
tional burden is Süli et al. [8], while for Bourdin et al., Chambolle et al., Del Piero
et al. [7, 10, 16] we are obliged to extrapolate our positive expectation from the very
�ne meshes showed in the corresponding numerical sections.

The paper is organized as follows. In Sect. 1.1, we describe the model, in Sect. 2,
we introduce the discrete setting and the anisotropic errorestimator which drives
the mesh adaptation. In Sect. 3, we provide the algorithm forthe minimization of
the energy functional, while in Sect. 4, we address the numerical results on the
benchmark tests, comparing them with the expected ones fromthe literature.

1.1 The Mathematical Model of Plane-Strain Fracture

The considered model extends the anti-plane case proposed in [1] and, following
[7], we introduce an isotropic linearly elastic constitutive law, i.e., the Plane-strain
Ambrosio-Tortorelli functional
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is the symmetric gradient tensor,T1 : T2 denoting the tensor product between
T1;T2 : W ! R2� 2, andx = ( x1;x2)T 2 W. In practice,v, with 0 � v � 1, can be
considered as a phase �eld for the crack interface [6, 28]. The �rst integral in (1)
represents the elastic energy of the material, while the second integral models the
energy associated with the crack propagation inside the material. The casev = 1
is the crack-free con�guration, since the last integral vanishes. On the contrary, the
regions wherev = 0 identify the cracked area.

Let 0 = t0 < : : : < tF = T be a partition of the time window[0;T]. Let g : W �
[0;T] ! R2 be an displacement assigned over a subsetWD � W which drives the
fracture onset, i.e.,

g(x;t) =

(
gD(t) if x 2 WD;

0 elsewhere:

Notice that, with a view to the numerical test cases, function gD is assumed to be
constant in space. We denote byA k(g) = f u 2 [H1(W)]2 : u(x) = g(x;tk) 8x 2 WDg
the space of the admissible solutions, i.e., the �elds whichcoincide withg on WD
at t = tk. According to a quasi-static approximation [19], the minimization of the
functionalJ in (1) at the time leveltk consists of �nding the pair(u(tk);v(tk)) , with
k = 0; : : : ;F, such that

(u(tk);v(tk)) 2 argmin
u 2 A k(g)

v 2 H1(W; [0;1]);vjCRk� 1 = 0

J(u;v); (2)

whereCRk� 1 = f x 2 W : v(tk� 1) < CRTOLg, with CRTOLa tolerance used to enforce
the irreversibility of the crack. For simplicity we denote hereafterg(x;t) with g(t).
Moreover, standard notation is understood to denote Sobolev spaces and their norms
[23].

Following [4], we relax the constraint in (2) with two penalization terms which
lead us to rewrite the Plane-strain Ambrosio-Tortorelli elasticity functional as
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wheregA and gB are the penalty constants. Henceforth we always deal with this
functional instead of (1). We are dealing now with an unconstrained minimization
process. At each time level, we seek the pair(u(tk);v(tk)) such that

(u(tk);v(tk)) 2 argmin
(u;v)2[H1(W)]2� H1(W;[0;1])

JPAT(u;v): (4)

Since the penalized constraints are clearly continuous, convex, and always non-
negative, the proof of the convergence of the minimizers of (4) to the minimizers
of (2), for gA;gB ! 0, follows fromG-convergence arguments (see [14]). Moreover,
we are interested in local minimizers for two reasons. On theone side, the search
for global minimizers is an NP-hard problem; on the other side, one can expect that
the fracture moves along critical points of the physical energy. Therefore, it is not
only (numerically) impossible to compute global minimizers with some guarantees,
but it may also not be a meaningful choice from a physical viewpoint.
Mimicking the proof in [8] for the anti-plane case, we can prove that the functional
JPAT is Fréchet-differentiable in[H1(W)]2 � (H1(W) \ L¥ (W)) . In particular, the
Fréchet derivative ofJPAT along direction(w;z) is

�
JPAT(u;v;w;z)

� 0 =
Z

W
(v2 + h )s (u) : E(w) dx+

1
gA

Z

WD

(u � g(tk)) � wdx
| {z }

= a(v;u;w)

+
Z

W

h
vzs (u) : E(u) + a (v� 1)z+ eÑv� Ñz

i
dx+

1
gB

Z

CRk� 1

vzdx:
| {z }

= b(u;v;z)

(5)

Accordingly, we recall the de�nition of critical points ofJPAT:

De�nition 1. The pair(u;v) 2 [H1(W)]2 � (H1(W) \ L¥ (W)) is acritical point of
JPAT if

�
JPAT(u;v;w;z)

� 0= 0 for all w 2 [H1(W)]2 and for allz2 (H1(W) \ L¥ (W)) .

Following Proposition 2.2 in [4], we can prove that condition 0� v � 1 is automat-
ically guaranteed for any critical point.

2 Anisotropic Error Analysis

This section collects the main developments of this paper. After providing the
discrete approximation of the functionalJPAT, we introduce the main tools of
the anisotropic background, and we derive the theoretical result used to drive the
anisotropic mesh adaptation procedure.
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2.1 Discretization ofJPAT

We introduce the discrete counterpart of the minimization problem (4) in a �nite
element setting. Thus, we denote byf T hg a family of conforming meshes ofW, and
let Nh be the index set of the vertices ofT h, andEh the skeleton ofT h. Henceforth,
we assume that the boundary ofWD coincides with the union of consecutive edges in
Eh. We associate withT h the spaceXh of continuous piecewise linear �nite elements
[11].
We denote byJPAT

h (uh;vh) the discrete correspondent ofJPAT(u;v) in (3), withuh =
(uh;1;uh;2)T 2 [Xh]2 andvh 2 Xh, given by

JPAT
h (uh;vh) =

1
2

Z

W

h�
Ph(v2

h) + h
�
s (uh) : E(uh) + a Ph((vh � 1)2) + ejÑvhj2

i
dx

+
1

2gA

2

å
i= 1

Z

WD

Ph
�
(uh;i � gh;i(tk))

2�
dx+

1
2gB

Z

CRk� 1

Ph
�
v2

h

�
dx;

(6)
where Ph : C0(W) ! Xh is the Lagrangian interpolant onto the spaceXh, with
gh(tk) = ( gh;1(tk);gh;2(tk))

T 2 [Xh]2 a suitable discrete approximation ofg(tk). In
particular, we pickgh(tk) such that

Z

WD

gh(tk) � whdx =
Z

WD

g(tk) � whdx 8wh 2 [Xh]2; (7)

i.e., gh(tk) is theL2(WD)-projection ofg(tk) onto [Xh]2. The action of the operator
Ph is equivalent to a mass lumping [30].

The discrete analogue to (4) consists of �nding the pair(uh(tk);vh(tk)) such that

(uh(tk);vh(tk)) 2 argmin
(uh;vh)2 [Xh]2� Xh

JPAT
h (uh;vh):

De�nition 1 can be also provided in the discrete case.

De�nition 2. The pair (uh;vh) 2 [Xh]2 � Xh is a critical point of JPAT
h if, for all

(wh;zh) 2 [Xh]2 � Xh,
�
JPAT

h (uh;vh;wh;zh)
� 0= 0, where

�
JPAT

h (uh;vh;wh;zh)
� 0=

Z

W
(Ph(v2

h) + h )s (uh) : E(wh) dx +
1
gA

2

å
i= 1

Z

WD

Ph
�
(uh;i � gh;i(tk))wh;i

�
dx

| {z }
= ah(vh;uh;wh)

+
Z

W

h
Ph(vhzh)s (uh) : E(uh) + a Ph

�
(vh � 1)zh

�
+ eÑvh � Ñzh

i
dx +

1
gB

Z

CRk� 1

Ph(vhzh)dx
| {z }

= bh(uh;vh;zh)

is the Fréchet derivative ofJPAT
h .
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Thanks to the mass lumping associated withPh and to the assumption

ki j =
Z

W
Ñxi � Ñx j dx � 0 8i 6= j 2 Nh;

about the stiffness matrixK, with f xl g
#Nh
l= 1 the basis ofXh, the property 0� vh � 1,

related to the discrete maximum principle (see, e.g., [12, 22, 29]), can be assessed
for any critical pointvh of (6).

2.2 The Anisotropic Setting

Following [15, 25], we recover the anisotropic informationfrom the spectral proper-
ties of the af�ne mapTK : bK ! K, with x = TK(bx) = MKbx+ bK , from the equilateral
reference trianglebK with vertices(�

p
3=2; � 1=2), (

p
3=2; � 1=2), (0;1), inscribed

in the unit circle, to the generic triangleK of T h, with MK 2 R2� 2, bK 2 R2, x 2 K
andbx 2 bK.
In particular, we apply the polar decomposition to the Jacobian MK , i.e., MK =
BKZK , whereBK ;ZK 2 R2� 2 are a symmetric positive de�nite and an orthogo-
nal matrix, respectively. MatrixBK deformsK, while ZK turns it about the ori-
gin. Then, we consider the spectral decomposition ofBK , i.e.,BK = RT

KL KRK , with
RT

K = [ r1;K ; r2;K ] andL K = diag(l 1;K ; l 2;K), with l 1;K � l 2;K . The eigenvectorsr i;K
identify the directions of the semi-axes of the ellipse circumscribed toK, while the
eigenvaluesl i;K provide the length of these semi-axes (see Fig. 1). We also de�ne
the aspect ratio of the elementK by sK = l 1;K=l 2;K. The valuesK = 1 corresponds
to the isotropic case.

To derive thea posteriori error estimator, we introduce anisotropic error esti-
mates for the quasi-interpolant Clément operatorCh : L2(W) ! Xh [13].

Lemma 1. Let w2 H1(W). If #DK � N for someN 2 N, anddiam(T � 1
K (DK)) �

CD ' O(1), whereDK = f T 2 T h : T \ K 6= /0g, then there exist constants Cs =
Cs(N ;CD), with s= 1;2;3, such that, for any K2 T h, it holds

kw� Ch(w)kL2(K) � C1

h 2

å
j= 1

l 2
j;K(rT

j;KGDK (w)r j ;K)
i 1=2

;

jw� Ch(w)jH1(K) � C2
1

l 2;K

h 2

å
j= 1

l 2
j;K(rT

j;KGDK (w)r j ;K)
i 1=2

; (8)

kw� Ch(w)kL2(¶K) � C3

�
hK

l 1;K l 2;K

� 1=2
"

2

å
j= 1

l 2
j;K(rT

j;KGDK (w)r j ;K)

#1=2

;

where hK = diam(K), while GDK (w) is the symmetric positive semi-de�nite matrix
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: (9)

We refer to [17, 18] for the proof.

Remark 1.The geometric hypotheses in Lemma 1 do not limit the anisotropic fea-
tures of the elements, but ensure that the variation of thesefeatures is smooth over
DK [27].

An equivalence result between theH1(DK)-seminorm and a corresponding anisotropic
version is also useful for thea posteriorianalysis.

Lemma 2. Let w2 H1(W) and K2 T h. For anyb1;b2 > 0, it holds

minf b1;b2g �
b1(rT

1;KGDK (w)r1;K) + b2(rT
2;KGDK (w)r2;K)

jwj2
H1(DK)

� maxf b1;b2g;

where GDK (�) is de�ned as in(9).

The proof of this result can be found in [24].
We have now all the theoretical tools required for tackling the anisotropica pos-

teriori analysis.

2.3 Thea PosterioriError Estimator

The following proposition states the main result of the paper and provides a variant
on the anti-plane case addressed in [4].
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Proposition 1. Let (uh;vh) 2 [Xh]2 � Xh be a critical point of JPAT
h according to

De�nition 2. Then, for any pair of functions(w;z) 2 [H1(W)]2 � H1(W), with w =
(w1;w2)T , it holds

�
�� JPAT(uh;vh;w;z)

� 0�� � C å
K2T h

n 2

å
i= 1

r A
i;K(vh;uh) wK(wi )+ r B

K(uh;vh) wK(z)
o

; (10)

where C= C(N ;CD), the residualsr A
i;K(vh;uh) andr B

K(uh;vh) are

r A
i;K(vh;uh) = k2vhs i (uh) � ÑvhkL2(K) +

1
l 2;K

kv2
h � Ph(v

2
h)kL¥ (K) ks i(uh)kL2(K)

+
1
2

k[[s i(uh)]]kL¥ (¶K) kv2
h + hkL2(¶K)

�
hK

l 1;K l 2;K

� 1=2

+
jKj1=2h2

K

l 2;K gA
juh;i � gh;i(tk)jW1;¥ (K)

+
dK;WD

gA

�
kuh;i � gh;i(tk)kL2(K) + kgh;i(tk) � gi(tk)kL2(K)

�
;

r B
K(uh;vh) = k(s (uh) : E(uh) + a )vh � a kL2(K) +

e
2

k[[Ñvh]]kL2(¶K)

�
hK

l 1;K l 2;K

� 1=2

+
dK;CRk� 1

gB
kvhkL2(K) +

h2
K

l 2;K

h
ks (uh) : E(uh) + a kL2(K) +

jKj1=2dK;CRk� 1

gB

i
jvhjW1;¥ (K) ;

with uh = ( uh;1;uh;2)T , the weights are

wK(x ) =
h 2

å
i= j

l 2
j;K(rT

j;KGDK (x )r j ;K)
i 1=2

8x 2 H1(W);

where

[[s i(uh)]] =

(
[s i (uh) � n]e e2 Eh \ W

2(s i(uh) � n)je e2 Eh \ ¶W
; [[Ñvh]] =

(
[Ñvh � n]e e2 Eh \ W

2(Ñvh � n)je e2 Eh \ ¶W
(11)

denote the generalized jump of the i-th component of the normal Cauchy stress ten-
sor and of the normal derivative of vh, respectively, with[�]e the standard jump
across e,n the unit normal vector to the generic edge inEh, s i (uh) the i-th column
of s , gh is chosen as in(7), anddK;v = 1 if K \ v 6= /0 anddK;v = 0 otherwise, with
v � W.

Proof. Since(uh;vh) is a critical point ofJPAT
h , we have that

ah(vh;uh;wh) = 0 8wh 2 [Xh]2; bh(uh;vh;zh) = 0 8zh 2 Xh: (12)

Moreover, from (5), for any pair(w;z) 2 [H1(W)]2 � H1(W), it holds

j
�
JPAT(uh;vh;w;z)

� 0j � j a(vh;uh;w)j + jb(uh;vh;z)j: (13)
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Now, we analyze the two terms in (13) separately, starting from ja(vh;uh;w)j.
Thanks to (12), for anyw 2 [H1(W)]2 andwh 2 [Xh]2, we have that

ja(vh;uh;w)j � j a(vh;uh;w � wh)j + ja(vh;uh;wh) � ah(vh;uh;wh)j: (14)

Let us focus on the �rst term on the right-hand side of (14). After splitting the
integrals on the mesh elements, and by exploiting integration by parts, we get

�
�a(vh;uh;w � wh)

�
� =

�
�
� å

K2T h

n Z

K
(v2

h + h )s (uh) : E(w � wh) dx

+
1
gA

Z

K
(uh � g(tk)) � (w � wh) cWD dx

o�
�
�

=
�
�
� å

K2T h

n Z

K
� 2vhs (uh) (w � wh) � Ñvhdx+

Z

¶K
(v2

h + h )s (uh) (w � wh) � nds

+
1
gA

Z

K

�
(uh � gh(tk)) + ( gh(tk) � g(tk))

�
� (w � wh) cWD dx

o�
�
� ;

wherecv denotes the characteristic function of the generic setv � W. To preserve
the directional information, we now deal with the terms on the right-hand side com-
ponentwise. For this purpose, we de�ne

a(vh;uh;w � wh) =
2

å
i= 1

ai(vh;uh;wi � wh;i);

with wh = ( wh;1;wh;2)T , and

ai(vh;uh;wi � wh;i) =

å
K2T h

n Z

K
� 2vhs i(uh) � Ñvh(wi � wh;i) dx +

Z

¶K
(v2

h + h )s i(uh) � n(wi � wh;i) ds

+
1
gA

Z

K

�
(uh;i � gh;i(tk)) + ( gh;i(tk) � gi(tk))

�
(wi � wh;i) cWD dx

o
:

Thanks to Hölder and Cauchy-Schwarz inequalities and de�nition (11), we obtain

�
�ai(vh;uh;wi � wh;i)j � å

K2T h

n
k2vhs i(uh) � ÑvhkL2(K) kwi � wh;ikL2(K)

+
1
2

k[[s i(uh)]]kL¥ (¶K)kv2
h + hkL2(¶K) kwi � wh;ikL2(¶K) +

1
gA

k(wi � wh;i) cWDkL2(K)

�
k(uh;i � gh;i(tk))cWDkL2(K) + k(gh;i(tk) � gi(tk))cWDkL2(K)

�o
:

Pickingwh;i = Ch(wi ) and thanks to Lemma 1, we obtain
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�
�ai(vh;uh;wi � wh;i)

�
� � C å

K2T h

n
k2vhs i(uh) � ÑvhkL2(K)

+
1
2

k[[s i(uh)]]kL¥ (¶K)kv2
h + hkL2(¶K)

�
hK

l 1;K l 2;K

� 1=2

+
dK;WD

gA

�
kuh;i � gh;i(tk)kL2(K) + kgh;i(tk) � gi(tk)kL2(K)

� o
"

2

å
j= 1

l 2
j;K(rT

j;KGDK (wi )r j ;K)

#1=2

:

(15)
Now we deal with the second term on the right-hand side of (14), that we bound as

ja(vh;uh;wh) � ah(vh;uh;wh)j �
�
�
�
Z

W

�
v2

h � Ph(v
2
h)

�
s (uh) : E(wh) dx

�
�
�

+
1
gA

�
�
�
Z

WD

(I � Ph)
�
(uh � gh(tk)) � wh

�
dx

�
�
� +

1
gA

�
�
�
Z

WD

�
gh(tk) � g(tk)

�
� whdx

�
�
�:

(16)
We anticipate the auxiliary result based on the equivalenceof norms on a �nite-
dimensional space,

jj hy hjH2(K) � 4jj hjW1;¥ (K) kÑy hkL2(K) 8j h;y h 2 Xh; 8K 2 T h; (17)

which follows by straightforward calculus. Using the de�nition (7) ofgh(tk), the last
term in (16) turns out to be zero. Considering again (16) componentwise, employ-
ing Hölder and Cauchy-Schwarz inequalities together withthe standard isotropic
estimate for theL2-norm of the interpolation error associated withPh, we get

jai(vh;uh;wh) � ai;h(vh;uh;wh)j � C å
K2T h

n jKj1=2h2
K

gA
j(uh;i � gh;i(tk))wh;i jH2(K)

+ kv2
h � Ph(v

2
h)kL¥ (K) ks i(uh)kL2(K) kÑwh;ikL2(K)

o
;

where the constantC does not depend on the aspect ratiosK of K. Then, we employ
(17) together with estimate (8) and Lemma 2 withb1 = l 2

1;K , b2 = l 2
2;K , to obtain
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jai(vh;uh;wh) � ai;h(vh;uh;wh)j � C å
K2T h

n� jKj1=2h2
K

gA
juh;i � gh;i(tk)jW1;¥ (K)

+ kv2
h � Ph(v

2
h)kL¥ (K) ks i(uh)kL2(K)

�
kÑwh;ikL2(K)

o

� C å
K2T h

n� jKj1=2h2
K

gA
juh;i � gh;i(tk)jW1;¥ (K) + kv2

h � Ph(v
2
h)kL¥ (K) ks i(uh)kL2(K)

�

�
kÑwh;i � ÑwikL2(K) + kÑwikL2(K)

�o

� C å
K2T h

n� jKj1=2h2
K

gA
juh;i � gh;i(tk)jW1;¥ (K) + kv2

h � Ph(v
2
h)kL¥ (K) ks i(uh)kL2(K)

�

1
l 2;K

h 2

å
j= 1

l 2
j;K(rT

j;KGDK (wi )r j ;K)
i 1=2o

:

(18)
Therefore, collecting (15) and (18), we are able to bound componentwise the �rst
term on the right-hand side of (13), as

ja(vh;uh;w)j � C å
K2T h

2

å
i= 1

r A
i;K(vh;uh) wA

K(wi ):

The estimate of the second term on the right-hand side of (13)can be carried out ex-
actly as the corresponding one in the proof of Proposition 3.3 in [4], after replacing
jÑuhj2 with s (uh) : E(uh). This yields

4jb(uh;vh;z)j � C å
K2T h

r B
K(uh;vh) wK(z):

ut

To make estimate (10) useful in practice, we have to pick the pair of functions(w;z).
Mimicking the considerations in [4], we choosew = uh andz= vh. This leads us to
de�ne the error estimator

h = å
K2T h

hK(uh;vh);

where the local estimator is

hK(uh;vh) =
2

å
i= 1

r A
i;K(vh;uh) wK(uh;i) + r B

K(uh;vh) wK(vh): (19)

Remark 2.Although in this work we deal with a speci�c case of linear elasticity
constitutive law, we do believe that it is possible to extendthea posteriorianalysis
to a more general model, for instance, the one recently introduced in [9].
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3 The Numerical Anisotropic Procedure

The numerical minimization of (6) is not a trivial task sinceit is a nonconvex func-
tional due to the presence of the termPh(v2

h)s (uh) : E(uh). In particular, the meth-
ods available in the literature do not guarantee, in general, the convergence to global
minimizers (see, e.g., [5]) but only to local minima.

In the �rst part of this section, we introduce the procedure exploited to convert the
anisotropic estimator (19) into an actual anisotropic tool. In the second part of this
section, we merge this approach with a suitable minimization algorithm, extending
the method in [4].

3.1 A Metric-Driven Approach

Following [15, 25], we use a metric-based mesh adaptive approach (see, e.g., [21]).
In particular, we predict the mesh with the least number of elements ensuring a given
accuracy on the global estimatorh .

There exists a tight relation between metric and mesh. Actually, with an assigned
meshT h, we can associate a corresponding piecewise constant metric given by
MK = RT

KL � 2
K RK , for anyK 2 T h, where matricesRK andL K are exactly the same

as in Sect. 2.2. Likewise, for a given metric �eldM : W ! R2� 2, we can build a
mesh, sayT M , such thatM K = M jK coincides withMK , for anyK 2 T M .

To build the new adapted mesh, we adopt a two-step procedure.First, we derive a
metricM out of the error estimator (19). Then, we generate the new mesh induced
by this metric using the metric-based mesh generator inFreeFem++ [20].

To obtainM , we resort to an iterative procedure. At each iteration, sayl , we deal
with three quantities:

i) the actual meshT (l )
h ;

ii) the new metricM (l+ 1) computed onT (l )
h ;

iii) the updated meshT (l+ 1)
h induced byM (l+ 1).

The new metric is predicted by suitably rewriting the local estimatorhK(uh;vh)
to single out the geometric information and then by applyingan error equidistri-
bution criterion combined with the minimization of the number of elements. The
re-arranged local estimator is

hK(uh;vh) = mK

n 2

å
i= 1

r A
i;K(vh;uh) wK(uh;i) + r B

K(uh;vh) wK(vh)
o

; (20)

wheremK = j bKj
�
l 1;K l 2;K

� 3=2 lumps all the areajKj information,

r A
i;K(vh;uh) =

r A
i;K(vh;uh)

�
j bKjl 1;K l 2;K

� 1=2
; r B

K(uh;vh) =
r B

K(uh;vh)
�
j bKjl 1;K l 2;K

� 1=2
;
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with i = 1;2, are approximately pointwise values (at least for a suf�ciently �ne
mesh), while the anisotropic information associated withK is collected in the scaled
weights

wK(xh) =
h
sK r T

1;K GDK (xh) r1;K +
1
sK

r T
2;K GDK (xh) r2;K

i 1=2
with xh = uh;1;uh;2;vh;

with GDK (�) = GDK (�)=(j bKj l 1;K l 2;K). In principle, each term in (20) provides a met-
ric. For practical reasons, however, we merge this information to obtain a single met-
ric, thus avoiding metric intersection. To do this, we follow the approach in Sect. 4
of [26], which allows us to rewrite (20) as

hK(uh;vh) = mK¡ K

with

¡ K =
h
sK r T

1;K GK r1;K +
1
sK

r T
2;K GK r2;K

i 1=2
; (21)

where the local matrix

GK =
2

å
i= 1

�
r A

i;K(vh;uh)
� 2GDK (uh;i) +

�
r B

K(uh;vh)
� 2GDK (vh) (22)

gathers the anisotropic information provided byuh andvh, suitably weighted via the
local residuals.

We minimize now the number of mesh elements by maximizing thearea of each
elementK with an errorequidistributionconstraint, i.e., we enforce that, for each
elementK 2 T (l+ 1)

h , hK(uh;vh) = mK ¡ K = TOL=#T (l )
h , whereTOLand #T (l )

h are

the user-de�ned global tolerance and the number of mesh elements inT (l )
h , respec-

tively. The constant valueTOL=#T (l )
h is ensured with an element of maximal area

only if ¡ K is minimized with respect tosK andr1;K , i.e., we solve elementwise the
constrained minimization problem

min
sK � 1;rm;K �rn;K= dmn

¡ K(r1;K ;sK); (23)

dmn being the Kronecker symbol. For computational convenience, all the quantities
appearing in (22) are evaluated on the background gridT (l )

h . On the other hand,
the aspect ratiosK and the unit vectorr1;K in (21) represent our actual unknowns.
According to Proposition 4.2 in [26], we can state the desired minimization result.

Proposition 2. Let f gi;K ;gi;Kg be the eigenvector-eigenvalue pair ofGK with g1;K �
g2;K > 0. Then, the minimum (23) is obtained for the choices

r1;K = g2;K and sK =
�

g1;K

g2;K

� 1=2

; (24)
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yielding the value
�
2

p
g1;Kg2;K

� 1=2 for ¡ K .

The minimization problem (23) can be solved analytically via (24) without resorting
to any numerical optimization tool.

Finally, the optimal metricM (l+ 1) is generated by exploiting again the equidis-
tribution constraint, i.e., by solving the equations

j bKj
�
l 1;K l 2;K

� 3=2 �
2

p
g1;Kg2;K

� 1=2 =
TOL

#T (l )
h

and
l 1;K

l 2;K
= sK =

�
g1;K

g2;K

� 1=2

:

(25)
System (25) provides us with the distinct values

l 1;K =
�

1

j bKj
p

2

�
g1;K

g2
2;K

� 1=2 TOL

#T (l )
h

� 1=3

; l 2;K =
�

1

j bKj
p

2

�
g2;K

g2
1;K

� 1=2 TOL

#T (l )
h

� 1=3

:

(26)
Eventually, the optimal metricM (l+ 1) is characterized byr1;K in (24),l 1;K andl 2;K
in (26), with r2;K ? r1;K .

3.2 The Whole Adaptive Procedure

In this section we propose a numerical algorithm which combines a suitable mini-
mization method for the nonconvex functionalJPAT

h with the mesh adaptation pro-
cedure of the previous section.

The algorithm is a generalization of the Algorithms 2 and 3 proposed in [4]. In
practice, we switch from mesh adaptation, driven by the toleranceTOL= REFTOL�
1, to minimization ofJPAT

h , until both the mesh and the functional stagnate to within
given thresholds,MESHTOL� 1 andVTOL� 1, respectively. The minimization of
the functional exploits the alternate minimization algorithm proposed in [8] for deal-
ing with nonconvex functionals, relying on the convexity only along the directions
identi�ed by uh andvh. In particular, our new algorithm carries out mesh adaptation
after a maximum number,nMIN, of minimization steps. Given an initial mesh,T (0)

h ,
we proceed as follows:

The minimization of the functional with respect touh andvh is performed by
solving the corresponding Euler-Lagrange equations, since the functional is actually
(strictly) convex with respect to the individual variables. In both cases, the equations
are standard linear elliptic problems.

The interpolation operatorPn! n+ 1(zh) is used to map the �nite element function
zh de�ned onT n

h onto the new meshT n+ 1
h , before restarting any new optimization

or time loop.
The convergence of the mesh adaptivity is assessed by checking the relative vari-

ation of the number of elements. The main novelty with respect to the algorithms in
[4] is that, throughnMIN, the functionalJPAT

h is not necessarily exactly minimized
after the innerwhile loop. Algorithms 2 and 3 represent particular cases of the algo-
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Algorithm 3.1 Optimize(nMIN)-while-Adapt
1: Setk = 0, l = 0;
2: If k = 0, setv1

h = 1; elsev1
h = vh(tk� 1);

3: Setl = 0; errmesh= 1; err= 1;
4: while errmesh� MESHTOLj err � VTOLdo
5: Seti = 1; err=1;
6: while err � VTOL& i � nMINdo
7: ui

h = argmin
zh2[X(l )

h ]2
JPAT
h (zh; vi

h);

8: vi+ 1
h = argmin

zh2X(l )
h

JPAT
h (ui

h; zh);

9: err= kvi+ 1
h � vi

hkL¥ (W) ;
10: i  i + 1;
11: end while
12: Compute the new metricM (l+ 1) based onui� 1

h andvi
h;

13: Build the adapted meshT (l+ 1)
h ;

14: errmesh= j#T (l+ 1)
h � #T (l )

h j=#T (l )
h ;

15: Setv1
h = P l ! l+ 1(vi

h);
16: l  l + 1;
17: end while
18: uh(tk) = P l � 1! l (u

i� 1
h ); vh(tk) = P l � 1! l (v

i
h); T k

h = T (l )
h ;

19: SetT (0)
h = T k

h ;
20: k  k+ 1;
21: if k > F, stop; else goto 2.

rithm above. SelectingnMIN= ¥ , we recover Algorithm 2, which is suited to deal
with slowly advancing fractures, because the coupling between optimization and
adaptation is not so tight. SettingnMIN= 1, we get back Algorithm 3, which alter-
nates optimization and mesh adaptation more closely. However, in such a case, the
crack evolution may be biased by the mesh which is adapted to nonoptimal �elds,
uh;vh. These values ofnMINrepresent two extreme choices. In general, we may pick
any intermediate value, e.g.,nMIN= 7 in the section below.

4 Numerical Assessment

We verify Algorithm 3.1 on two numerical tests inspired by [7, 16]. The second test
case turns out to be particularly challenging.

4.1 Traction of a Fiber-Reinforced Matrix

We consider the rectangular domainW= ( 0;3) � (0;3:5) in Fig. 2 left, comprising a
nonelastic circular �ber of radius 0:5 centered at(1:5;1:5), for t 2 [0;0:5], uniformly
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W

q

W

WD+
WD

WD�

Fig. 2 Geometric con�gurations for the traction of a �ber-reinforced matrix (left) and for the crack
branching test (right)

partitioned with a total number ofF = 50 time steps. On the subdomainWD =
(0;3) � (3;3:5) we enforce the loadg, with gD = ( 0;t)T . The �ber is held �xed while
a uniform vertical displacement is induced bygD on the top side of the matrix. The
other sides of the domain are traction-free. As a function oftime, at the beginning
the matrix behaves elastically; then, an asymmetric crack suddenly develops and
eventually cuts the matrix in two parts. The parameters involved in (3) are set to

e = 10� 1; h = 10� 3; gA = gB = 10� 7; l =
Y p

(1+ p)(1� 2p)
m=

Y
2(1+ p)

;

whereY = 30 is Young's modulus andp = 0:18 is the Poisson coef�cient. The
values of the tolerances required by Algorithm 3.1 are

VTOL= 5� 10� 3; CRTOL= REFTOL= 10� 3; MESHTOL= 10� 2:

Figure 3 shows thevh-�eld at three time levels as well as the associated anisotropic
adapted mesh. At timet = 0:25 a crack on top of the �ber is created and starts
propagating slowly and symmetrically with respect to the �ber. At timet = 0:35 the
symmetry is broken and the crack splits the matrix on one sideonly. Afterwards,
at timet = 0:39, the domain is thoroughly split into two parts. This behavior is not
essentially affected bye. Actually, a reduction of this parameter by one order of
magnitude yields the results in Fig. 4, which share the same pattern as in Fig. 3,
although with a sharper crack. In all cases, the adapted meshes are very �ne close
to the fracture and in the area of higher stress. Moreover, the correct path of the
crack is detected in a very ef�cient way, i.e., with quite fewelements. In particular,
in Fig. 3 and 4 (bottom-right), the meshes consist only of 1810 and 12381 elements,
respectively. The maximum aspect ratio of the three meshes in Fig. 3 is 16, 32 and
109.
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Fig. 3 Traction of a �ber-reinforced matrix. Time evolution of thevh-�eld (left): t = 0:25 (top),
t = 0:35 (center), andt = 0:39 (bottom); corresponding adapted meshes (right) withe = 10� 1
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Fig. 4 Traction of a �ber-reinforced matrix. Time evolution of thevh-�eld (left): t = 0:30 (top),
t = 0:38 (center), andt = 0:40 (bottom); corresponding adapted meshes (right) withe = 10� 2
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Figure 5 shows the time evolution of the energy. The elastic energy (dashed line)
is associated with the �rst term in the integral overW in (6), while the �ctitious crack
energy (dash-dotted line) represents the second term. The black line is the sum of
these two contributions. Theoretically, we expect the elastic energy to disappear
after the collapse of the domain. On the contrary, a residualenergy remains, due to
the regularization parameterh in the model. Moreover, three sudden increases of
the crack energy occur: the �rst at timet = 0:24, when a �nite-length crack appears
on top of the �ber; the second at timet = 0:37, when the domain breaks on one side;
and the last takes place when the domain breaks down, att = 0:39. This behavior
is qualitatively comparable with the ones in Fig. 4 in [16] and in Fig. 3 in [7]. This
corroborates the fact that anisotropic meshes do not affectthe crack dynamics.

4.2 Crack Branching

The domain for the second test case is the cracked rectangular elastic sample shown
in Fig. 2, right. The initial crack is horizontal and parallel to the upper end lower
sides of the sample, while a displacement �eld of increasingmagnitude and �xed
orientation,q, to thex1-axis, is applied to the horizontal sides. The later crack evo-
lution is monitored for several values ofq. The �nal time is set toT = 0:2, and the
total number of uniform time steps isF = 20. The �nal time is chosen when the
crack is about to turn towards the bottom right corner of the domain. The key issues
of this problem is the correct prediction of the actual branching angle of the crack,
in particular when the applied displacement �eld is not orthogonal to the domain
border. For this purpose, we resort to a suitable mesh adaptation strategy. In partic-

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

Total Energy
Elastic Energy
Fracture Energy

Fig. 5 Traction of a �ber-reinforced matrix. Time evolution of theenergy
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ular, we identifyW with the square domain(� 1:5;1:5)2, WD = WD� [ WD+ with
WD� = ( � 1:5;1:5) � (� 1:5; � 1:3) andWD+ = ( � 1:5;1:5) � (1:3;1:5), gD is

gD(t) =

(
(t cos(q);t sin(q)) onWD+

(� t cos(q); � t sin(q)) onWD�

(27)

and the model parameters are

e = 10� 2; h = 10� 5; gA = gB = 10� 5; l =
Y p

(1+ p)(1� 2p)
; m=

Y
2(1+ p)

;

with Y = 45 andp = 0:18. The tolerances of Algorithm 3.1 are

VTOL= 10� 4; CRTOL= 3� 10� 4; REFTOL= 10� 3; MESHTOL= 10� 2:

Figure 6 gathers thevh-�eld and the corresponding anisotropic adapted mesh at
the �nal time, for several orientationsq. The cardinality of the meshes in Fig. 6
is 2941, 1268, 1652, 1302, 1570, 3804, in top-down order. Notice that the mesh
adaptive procedure identi�es the con�gurations associated with q = p=2 andq = 0
as being the most challenging. In all cases, the mesh closelymatches the crack
path, with a very thin thickness of the adapted area. The anisotropic features of the
meshes are highlighted by the values of the maximum aspect ratio, which varies
between 28, forq = p=20, and 384, forq = 0. Moreover, whenq = 0, in contrast
to [7], where it appears an unphysical symmetric crack branching, we obtain a crack
which moves straight a very short distance, before turning downwards but with a
slightly smaller angle than expected. In practice, we are able to predict reliably
the crack branching forq & 3� . Figure 7 shows the branching angle as a function
of the orientationq. This angle has been computed by picking the angle at which
the distribution of the unit vectors,r1;K , gathered in bins of 20 angles each, over
the rectangle[0;0:08] � [� 0:08;0] is a maximum. On comparing our results with
the ones in [7], we observe a good agreement, with the additional capability of
correctly simulating the physical behavior for 3� . q . 7� , by enlarging the range
of reliability of the numerical tool in [7] whereq & 7� .
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Fig. 6 Crack branching. Distribution of thevh-�eld around the tip of the initial crack (left) and
�nal adapted mesh (right) forq = p=2;p=4;p=6;p=20;p=60;0, top-down
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Fig. 7 Crack branching. Branching angle as a function of the impressed displacement orientation

5 Conclusions

We have extended the anisotropic approach provided in [4] for the anti-plane case to
the more challenging plane-strain framework. This impliesmoving from a scalar to
a vector elastic problem. The proposed Algorithm 3.1 has been shown to correctly
identifying the physical crack path, under reasonable choices of the physical and
algorithmic parameters, aware also of the theoretical limits of the adopted mechan-
ical model. In particular, in the crack branching test case,the proposed procedure
allowed us to broaden the range of applicability of this model, with respect to what
studied in [7]. Another interesting issue to be investigated is a proper tuning of the
modeling parameters, such ase, h , and also of the physical parametersl andm. In
Sect. 4.1, we tackle to a some extent the sensitivity toe by highlighting the actual in-
�uence of e on the crack thickness. A more thorough investigation has been carried
out in [3] in the anti-plane case. We have also introduced a generalized version of
the algorithm proposed in [4]. In particular, Algorithm 3.1employs the new param-
eter, namelynMIN, through which we can adjust in a more precise way the interplay
between the minimization of the functional and the adaptation of the mesh. In future
developments, we shall be concerned with the study of more general mathematical
models, such as the ones introduced in [9], for a possible comparison with actual
experimental tests.
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9. Burke, S., Ortner, C., Süli, E.: An adaptive �nite element approximation of a generalized
Ambrosio-Tortorelli functional. Math. Models Methods Appl. Sci. 23(9), 1663–1697 (2013)

10. Chambolle, A., Dal Maso, G.: Discrete approximation of the Mumford-Shah functional in
dimension two. M2AN Math. Model. Numer. Anal.33(4), 651–672 (1999)

11. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North–Holland, Amsterdam
(1978)

12. Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the �nite element
method. Comput. Methods Appl. Mech. Engrg2(1), 17–31 (1973)

13. Clément, P.: Approximation by �nite element functionsusing local regularization. RAIRO
Anal. Numér.2, 77–84 (1975)

14. Dal Maso, G.: An introduction toG-convergence. Basel: Birkhäuser (1993)
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