The Bene ts of Anisotropic Mesh Adaptation for
Brittle Fractures Under Plane-Strain Conditions
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Abstract We develop a reliabla posteriorianisotropic rst order estimator for the
numerical simulation of the Francfort and Marigo model oftla fracture, after
its approximation by means of the Ambrosio-Tortorelli @tidnal model. We show
that an adaptive algorithm based on this estimator repeexialt the previously ob-
tained well-known benchmarks on fracture development wétticular attention
to the fracture directionality. Additionally, we explainhy our method, based on
an extremely careful tuning of the anisotropic adaptatias the potential of out-
performing signi cantly in terms of numerical complexitiye ones used to achieve
similar degrees of accuracy in previous studies.

1 Introduction

A variational formulation for the evolution of the fractuserface in a brittle, lin-
early elastic solid was proposed by Francfort and Marigd.8].[ The main feature
of this model is that there is no prede ned crack, i.e., theckris able to propagate
in the material without any constraint, driven only by ela$brces. Bourdin et al.
[7] addressed the numerical approximation of the soluticthe fracture model by
Francfort and Marigo by rst approximating it via the AmbiosTortorelli varia-
tional model. Then, an extremely ne discretization is doiesed to be able to cap-
ture the fracture path and its expected directional devetys, independently of
the intrisic anisotropies of the a priori prescribed megtisTechnique proved to be
very stable not only in the case of anti-plane shear, butialdte more challenging
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situation where plane-strain is considered, capturingpthsically expected crack
paths and directionalities. However, the cost of an exttgnme discretization to
render the material numerically homogenous is enormoadjrig to the quest for
possible alternative techniques based on adaptive sigateghich can break the
ambiguity of"the crack following the mesh or the mesh following the cfadk the
work of Chambolle et al. [10], an anisotropic adaptive négkment method was
presented for the simulation of the model of Francfort andidtein the anti-plane
shear case. The adaptive re-meshing is, however, basedoal @pproximation of
the Hessian of the solution, which, unfortunately, may ldekexpected regularity.
In the approach of Suli et al. [8], the adaptivity is drivekisively by ara posteri-
ori rst order estimator, but only isotropic mesh re nement wamsidered. In our
recent work [4], we tried to combine these two previous apphes, designing an
appropriatea posteriorianisotropic rst order estimator, leading to mesh coarsen-
ing far from the fracture and ne mesh elements exclusivegclose to the crack
path. Again this new method resulted being very ef cient afféctive, producing
stable and realistic results for some test cases whereite dpplied to the domain
is orthogonal to the domain itself. In this work, we study gnelsent numerical re-
sults in the case the fracture is induced by a plane-stréiesé tests play a key role
in validating the reliability and the applicability of awisopic mesh adaptation in
the context of quasi-static crack path detection. Indemdagsessing the quality of
our results we can count on previous precise studies of thaieur of the fracture,
both from numerical and physical viewpoints [2, 7].

The numerical experiments in Sect. 4 show that the propostldad is very stable
and it allows us to reproduce all the previously obtainedljgteons on fracture de-
velopment, in particular its directionality features. Atitthally, we expect that our
method, based on an extremely careful tuning of the anigimtadaptation, outper-
forms signi cantly the ones used to achieve similar degdesccuracy in previous
studies. Unfortunately, the only reference with which we campare the computa-
tional burden is Sili et al. [8], while for Bourdin et al., &mbolle et al., Del Piero
etal. [7, 10, 16] we are obliged to extrapolate our positigeetation from the very
ne meshes showed in the corresponding numerical sections.

The paper is organized as follows. In Sect. 1.1, we desdnideidel, in Sect. 2,
we introduce the discrete setting and the anisotropic estmator which drives
the mesh adaptation. In Sect. 3, we provide the algorithnthfieminimization of
the energy functional, while in Sect. 4, we address the nizaleresults on the
benchmark tests, comparing them with the expected onestfretiterature.

1.1 The Mathematical Model of Plane-Strain Fracture

The considered model extends the anti-plane case propogéfiand, following
[7], we introduce an isotropic linearly elastic constietiaw, i.e., the Plane-strain
Ambrosio-Tortorelli functional
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JPAT(u;v) = > (V2 + h)s (u) : E(u)dx+ 5 o al V)2 + gNvj? dx; (1)
w w

whereW R?, the eldsu:W! R?andv:W! [0;1]are the displacementand a
smoothed crack path indicator<0h e 1 anda = 1=(4e) are suitable regu-
larizing constantss (u) = | tr(E(u)) | + 2mE(u), is the Cauchy stress tensor, with
| andmthe Lamé constants, and, where, for evg@ry/! R?,
2 3
T 1 fdy fd,
_ 2 xx fxa
E(d) = § T é
SRS N R

2 T Tx X2

is the symmetric gradient tensof; : T, denoting the tensor product between
TTo: W! R? 2 andx = (xi;%)" 2 W. In practice,y, with 0 v 1, can be
considered as a phase eld for the crack interface [6, 28 Tht integral in (1)
represents the elastic energy of the material, while thersbitegral models the
energy associated with the crack propagation inside thenmahtThe case = 1

is the crack-free con guration, since the last integraligaes. On the contrary, the
regions where = 0 identify the cracked area.

LetO=tp<:::< tg = T be a partition of the time windo®; T]. Letg: W
[0;T]! R? be an displacement assigned over a subget W which drives the
fracture onset, i.e., (

oo(t) if x2 Wp;
g(x;t) =

0 elsewhere

Notice that, with a view to the numerical test cases, fumcgje is assumed to be
constantin space. We denoteAy(g) = fu2 [HY{(W)]? : u(x) = g(x;t) 8x2 Whg
the space of the admissible solutions, i.e., the elds whicimcide withg on W5
att = tx. According to a quasi-static approximation [19], the miization of the
functionald in (1) at the time levely consists of nding the paifu(ty);v(tk)), with
k= 0;:::;F, such that

(U(t);v(t)) 2 argmin - J(u;Vv); (2)
u2 Ag(9)
v2 HY(WA[0;1]);Vicr, , = O

whereCR, 1= fx2 W: v(ty 1) < CRTQd, with CRTOA tolerance used to enforce
the irreversibility of the crack. For simplicity we denoterbafterg(x;t) with g(t).
Moreover, standard notation is understood to denote Selspkces and their norms
[23].

Following [4], we relax the constraint in (2) with two perediion terms which
lead us to rewrite the Plane-strain Ambrosio-Tortore#isticity functional as
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|
JPAT(u;v) = 1 (V+ h)s(u):E(u)dx+} a(v 1)%+ gNvj? dx
2 w % w
12 , 1 g (3)
+ — ju t)jcdx+ — dx;
20 ! g(t)] 2% .

where gy and gz are the penalty constants. Henceforth we always deal with th
functional instead of (1). We are dealing now with an unc@ised minimization
process. At each time level, we seek the galiy); v(tk)) such that

(u(t);v(ty)) 2 argmin JPAT(u; v): (4)
(U)2[HY(W)]? HY(Wi[0;1])

Since the penalized constraints are clearly continuousyeeq and always non-
negative, the proof of the convergence of the minimizersddt@ the minimizers
of (2), forga; 8! 0, follows fromG-convergence arguments (see [14]). Moreover,
we are interested in local minimizers for two reasons. Onothe side, the search
for global minimizers is an NP-hard problem; on the othees@he can expect that
the fracture moves along critical points of the physicalrgpeTherefore, it is not
only (numerically) impossible to compute global minimigerith some guarantees,
but it may also not be a meaningful choice from a physical pient.

Mimicking the proof in [8] for the anti-plane case, we cany@dhat the functional
JPAT is Frechet-differentiable ifH(W)]?2 (HY(W)\ L¥(W)). In particular, the
Fréchet derivative ad™T along direction(w; 2) is

z Z

PATuviw:2) °=  (+ h)s(u) : E(w)dx+ 1 (u g(t) wdx
|2 - h }
Z h ~advuing z (5)
+ vzs(u) i E(u)+ a(v 1)z+ eNv Nz dx+ — vzdx:
12 (z 2R
=b(u;v;2)

Accordingly, we recall the de nition of critical points aFPAT:
De nition 1. The pair(u;v) 2 [HY{(W)]? (HY(W)\ L¥ (W) is acritical point of
JPATif JPAT(usviw;2) O= Oforallw2 [HY(W)]2 and for allz2 (HY(W)\ L¥ (W)).

Following Proposition 2.2 in [4], we can prove that condit® v 1 is automat-
ically guaranteed for any critical point.

2 Anisotropic Error Analysis

This section collects the main developments of this papé&erAproviding the
discrete approximation of the functiona', we introduce the main tools of
the anisotropic background, and we derive the theoretesllt used to drive the
anisotropic mesh adaptation procedure.
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2.1 Discretization of]”AT

We introduce the discrete counterpart of the minimizatioobfem (4) in a nite
element setting. Thus, we denotefily,g a family of conforming meshes o¥, and

let N, be the index set of the vertices ©f,, andE, the skeleton off ,. Henceforth,
we assume that the boundarf coincides with the union of consecutive edges in
E,. We associate witfi j, the space;, of continuous piecewise linear nite elements
[11].

We denote bylAT(up; viv) the discrete correspondent®t*T(u;v) in (3), withup =
(U1 Un2) T 2 [Xa]? andv, 2 X,, given by

Z h i
AT (up ) = 3w PV + h s(un) i E(un)+ aPy((vn 1))+ eRvyj? dx
1274 17
+ — 8 i Oni(t))? dx+ s Vi dx;
20 &, WDF% (Uni  Oni(t)) < dx 2% cr 1Pn h o dX

(6)
where R, : CO(W) | X, is the Lagrangian interpolant onto the spa%g with
On(t) = (gn1(t); gn2(t)) T 2 X a suitable discrete approximation gfty). In
particular, we piclgn(tx) such that

z z

On(t) whdx = o) whdx  8wh 2 [Xp]%; (7)
Wb Wo

i.e., gn(ty) is theL?(Wh)-projection ofg(ty) onto[X,]%. The action of the operator
B, is equivalent to a mass lumping [30].
The discrete analogue to (4) consists of nding the [§aji(t); vh(tk)) such that

(Un(t);Va(t)) 2 argmin AT (up;vi):
(UniVR)2[X? Xp

De nition 1 can be also provided in the discrete case.

De nition 2. The pair(up; Vi) 2 [Xp]? X is acritical point of JFAT if, for all

(Whizn) 2 DX]? Yoo IPAT(Un; Vi Whizn) %= 0, where

0
IPAT(Up; Vi Wi z) =

Z 2 Z
15
(Ph(VR)+ h)s (un) : E(wp)dx+ — § Ph (Ui Onii(tk)) Whyi dx
| {z }
Zh = an(Vh;Un;Wh) i 12
+  Ph(Vnzn)S(up) tE(up)+ aPy (vn 1)z, + eNvy Nz dx+ —  Py(vhzy)dx
12 z 2R
= bp(Un;Vh;zn)

is the Fréchet derivative afT.
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Thanks to the mass lumping associated Wtfand to the assumption
z
kj= Nx Nxjdx 0 8i6 j2Ny
w

about the stiffness matrix, with fmgf:NR the basis ok, the property 0 v, 1,
related to the discrete maximum principle (see, e.g., [2228]), can be assessed
for any critical pointv, of (6).

2.2 The Anisotropic Setting

Following [15, 25], we recover the anisotropic informatfoom the spectral proper-
ties of the af ne mapik : R1 K, withx = Tk (R) = IMIKR+ bk, from the equilateral
reference triangl@ with vertices( = 3=2; 1=2),( 3=2; 1=2),(0;1), inscribed
in the unit circle, to the generic triangke of Ty, with Mk 2 R? 2, bk 2 R?, x 2 K
andr 2 R.
In particular, we apply the polar decomposition to the Jaoby, i.e., Mk =
BkZx, whereBk;Zx 2 R? 2 are a symmetric positive de nite and an orthogo-
nal matrix, respectively. MatriBx deformsK, while Zx turns it about the ori-
gin. Then, we consider the spectral decompositioBigfi.e., Bk = RY Lk R, with
RE =[rik;rzak]andLk = diad/ 1.x;! 2x), with I 1.k [ 2. The eigenvectons.k
identify the directions of the semi-axes of the ellipse winscribed tK, while the
eigenvalues .k provide the length of these semi-axes (see Fig. 1). We als@de
the aspect ratio of the elemetby s« = | 1.x=/ 2. The valuesx = 1 corresponds
to the isotropic case.

To derive thea posteriorierror estimator, we introduce anisotropic error esti-
mates for the quasi-interpolant Clement oper&ipr L2(W) ! X, [13].

Lemmal.Letw2 HY(W).If#Dc N for someN 2 N, anddiam(T, (D))
Cp' O(1), whereDx = fT 2 Ty : T\ K6 0g, then there exist constantg €
Cs(N ;Cp), with s= 1;2;3, such that, forany R Ty, it holds

h 2 i 1=
kw  Ch(Wkeky C1 a IJ'Z;K(VJ'T;KGW(W)H:K) ;
i=1

h 2 i 1=
. . 1 o 1=
W Ch(W)jy(ky CZ—IZK a ! fk(rfkGocWrjx) (8)
K =1
o #1=
he 2 2

kw  Ch(Wkp2(gxy Cs a IjZ;K(ro;KGDK(W)rj:K) ;
j=1

Ikl 2k =

where Iy = diam(K), while Gp, (w) is the symmetric positive semi-de nite matrix
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Fig. 1 Anisotropic geometric quantities associated with the ap

2z Tw 2 Tw Tw R 8
X1 T X1 X2
Gp, (W) = . : 9)
T2Q< w 1]W w de
T X1 17X2 T X

We refer to [17, 18] for the proof.

Remark 1The geometric hypotheses in Lemma 1 do not limit the anipatriea-
tures of the elements, but ensure that the variation of tfeegares is smooth over
Dk [27].
An equivalence result between tHé( Dk )-seminorm and a corresponding anisotropic
version is also useful for the posteriorianalysis.

Lemma 2. Let w2 H(W) and K2 T. For anybs; b, > 0, it holds

bi(rT. . Gp, (W)r1x)+ bo(rY. Gp, (W)ro
minf b bag 1(r 1.k G ( )l..K.) 2(1 2.k G (W)r 2k ) maxt by: by

2
W00

where Gy, () is de ned as in(9).

The proof of this result can be found in [24].
We have now all the theoretical tools required for tackling &nisotropi@ pos-
teriori analysis.

2.3 Thea PosterioriError Estimator

The following proposition states the main result of the pael provides a variant
on the anti-plane case addressed in [4].
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Proposition 1. Let (Up;Vh) 2 [Xn]° Xn be a critical point of §AT according to
De nition 2. Then, for any pair of function&v;2) 2 [HY(W)]? HY(W), withw =
(wi;Wo) T, it holds
0 o n 02 0
FPATUpvew;2) © C & & rik(Wnsup) wk (W) + r &(un;vin) wk (2) ; (10)
K2Tp i=1

where C= C(N ;Cp), the residuals /i (vn; up) andr &(un; vn) are

- 1
r i (Vhiun) = k2vpsi(un) Nk 2 + Ekvﬁ Ph(VR)KL¥ (k) KSi(Un)K 2

1 he 2 jKj2h2 . :
~KI[si k kvi+ hk Kitni  Oni _
* SKISi(un)lkex iy kv + Ak Tl 2% + Tox o Ui Oni(t)iw k)
ok
+ érb Kini  Oni (b Kiagey + Koni(t) — Gilt) Kz
1=2
By ovs) — i € hk
r(un;vh) = k(s (un) 1 E(un)+ @)vh  akiz + 5 KINVAlk 2 k) Tonl ok
ok, he iKi2dker, !
+ R s KVik 2y + ﬁ ks (un) : E(un)+ ak 2 + T TKCR JVhiwa¥ k)
with up = (Un1; Un2) ", the weights are
h 2 i =
S 12 (T 1= 1
we(¥) = a ! fk(rjxGo(X)rjx) 8x 2 H(W);
i=j
where
( [si(up) nle €2 Ex\ W 3 ( [Nvih nle €2 E)\ W
[si(un)] = , ; [Nwp] = . _
2(si(un) n)jee2 Ex\ TW 2(Nvi, n)jee2 B\ TW
(11)

denote the generalized jump of the i-th component of the ald@auchy stress ten-
sor and of the normal derivative of,vrespectively, witH ]e the standard jump
across en the unit normal vector to the generic edgebg si(up) the i-th column

of s, gnis chosen asilf7), anddk:., = 1ifK\ v 6 Danddk., = 0 otherwise, with

v W

Proof. Since(up; v) is a critical point of AT, we have that

an(Vh;UniWh) = 0 8Wn 2 [Xo]%  bn(Univhize) = 0 82,2 Xyt (12)
Moreover, from (5), for any paifw;2) 2 [HX(W)]?> HY(W), it holds

i P (univiiwi2) G ] a(vi; unsw)j + jo(un; vy 2 (13)



Anisotropic adapted meshes for brittle fractures undemesistrain conditions 9

Now, we analyze the two terms in (13) separately, startimgnfja(vy;un;w)j.
Thanks to (12), for anw 2 [H1(W)]? andwy, 2 [Xp]?, we have that

ja(Vh;ups W) J @V Uns W Wh)j+ ja(Vh; Un;Wh) — @n(Vh; Un; Wh)j: (14)

Let us focus on the rst term on the right-hand side of (14)teAfsplitting the
integrals on the mesh elements, and by exploiting integmdiy parts, we get

nZ
a(Vhupw  wp) = § (V+ h)s(un) 1 E(wW  wp)dx
1 Z K2Th o
+& nKZ(Uh g(t)) (W wp) Cyy, dx i
= a4 s (up) (W wp) Rvpdx+  (va+ h)s(up)(w  wy) nds
KZTQ K o
o U () o) woupdk

wherec, denotes the characteristic function of the generiasset W. To preserve
the directional information, we now deal with the terms oatight-hand side com-
ponentwise. For this purpose, we de ne

. - S .
a(Vh; Uy W Wh) = @ ai(Vh Upy Wi Whi);
i1

with wy, = (Wh;1;Wh;2)Tv and

a(Vh; Un; Wi Whi) =

nZ Z
a 2unsi(un) Nva(wi wy)dx+  (V+ h)si(up) n(w  whi)ds
K2Th, K K .

+i ‘ (Uni  Oni(t)) +( Oni(t)  Gi(tk)) (Wi Whi) Cup dX

Thanks to Holder and Cauchy-Schwarz inequalities anditiem(11), we obtain
n
a(VhiupWi Whi)i & k2vhSi(un) Nvikizgo kwi Wik 2
K2Th
1 1
+ ék[[si(uh)]] kL¥(ﬂK)kVﬁ+ hkLz(ﬂK) kwj Wh;ik|_2(1[K) + &k(wi Wh;i) Cwp kLZ(K)
0
k(Ui 9ni(t)) Cup Kz + K(Oni(t)  Gi(t)) Cupkizk)

Pickingwy; = Ch(w;) and thanks to Lemma 1, we obtain
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n
ai(VhiunWi W) C & k2vpsi(un) Nvhky 2(x)
K2Th
h 1=2+ cheov,
Fiklax 0§
o 2
Kuni  Gni(tdKizgo + Koni(td  Giltkizgy @ ! 2k (1T Go (W)r jik)
j=1
’ (15)
Now we deal with the second term on the right-hand side of, th4} we bound as
VA
ja(Vh; Un;Wh)  @n(Vh; Un; Wh))] W Vi Ph(VR) S (un) : E(wh)dx
12 12
+— (I R) (un on(tk) wh dx + — On(tk) 9(tk) whdx:
A w A w
(16)
We anticipate the auxiliary result based on the equival@iagorms on a nite-
dimensional space,

1
+ Ek[[si (Un)DIKp¥ (k) kva+ h RS
#1=

i nYhivzy 40 niwey o KNY ikizgy 8 hiyn2 Xn; 8K2Th  (17)

which follows by straightforward calculus. Using the detion (7) of gn(t), the last
term in (16) turns out to be zero. Considering again (16) cameptwise, employ-
ing Holder and Cauchy-Schwarz inequalities together it standard isotropic
estimate for thé.?-norm of the interpolation error associated with we get

NiKj*2hg

jai(Vh; Un;Wh)  &n(vhiuniwh)j C @ JUni i (1)) Whii iy

K2Th
+kvi  Ph(VR)KL¥ (k) KSi(Un)Kp2(c) KRWiK 2y

where the constai@ does not depend on the aspect ragof K. Then, we employ
(17) together with estimate (8) and Lemma 2 with= | £, b2 = | 2, to obtain
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n jKj1=2h2

Jai(Vh; Un;Wn)  @in(VhsUniwn)i C @ Cjumi ()i

K2Th
+ kVﬁ Ho](Vﬁ) k|_¥ (K) ks;j (Uh) kLZ(K) kNWh;ikLz(K)
n JKJ 1=2 h2

CAa ——Fjun Oniltdiwvgo* kv Pr(VR)Kix ) ksi(un)k 2
K2Th R o

kNWh;i NWi kLZ(K) + kNW| kLz(K)

o N jKj#2h2 . _

Ca ——Fjun Oniltdiwvgo* kv Pr(Vi)kix ) ksi(un)k 2
K2Th R .

1 N2 11220

Tow a IJZ;K(ro;KGW(Wi)rJ';K)

2K j=1

(18)
Therefore, collecting (15) and (18), we are able to boundmmmentwise the rst
term on the right-hand side of (13), as

2
javhiupw)ji  C & @& rii(VhUn) wi(w):
K2Thi=1

The estimate of the second term on the right-hand side ofc@di3pe carried out ex-
actly as the corresponding one in the proof of Propositi8rir8[4], after replacing
jNupj? with s (un) : E(up). This yields

4ib(unve; i C A rR(univi) wk(2):
K2Th
u

To make estimate (10) useful in practice, we have to pick #iegd functiongw; 2).
Mimicking the considerations in [4], we choose= u, andz= v;,. This leads us to
de ne the error estimator
h= & hc(UnVh);
K2Th

where the local estimator is

2
Ak (UniVi) = @ T i (Vii Un) W (Ung ) + 7 i2(Un; Vi) Wk (V) (19)
i=1
Remark 2 Although in this work we deal with a speci ¢ case of linear slaity
constitutive law, we do believe that it is possible to extémla posteriorianalysis
to a more general model, for instance, the one recentlydnted in [9].
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3 The Numerical Anisotropic Procedure

The numerical minimization of (6) is not a trivial task sirités a nonconvex func-
tional due to the presence of the tan(vﬁ)s(uh) : E(up). In particular, the meth-
ods available in the literature do not guarantee, in gengtraconvergence to global
minimizers (see, e.g., [5]) but only to local minima.

Inthe rstpart of this section, we introduce the procedutpleited to convertthe
anisotropic estimator (19) into an actual anisotropic.ttothe second part of this
section, we merge this approach with a suitable miniminagigorithm, extending
the method in [4].

3.1 A Metric-Driven Approach

Following [15, 25], we use a metric-based mesh adaptivecgupr (see, e.g., [21]).
In particular, we predict the mesh with the least numbererngnts ensuring a given
accuracy on the global estimatr

There exists a tight relation between metric and mesh. Algiwdth an assigned
meshTy, we can associate a corresponding piecewise constantcngdten by
Mk = REL, %Ry, for anyK 2 T}, where matrice®¢ andLk are exactly the same
as in Sect. 2.2. Likewise, for a given metric e : W! R? 2, we can build a
mesh, sayl  , such thaM g = M jk coincides withMk, foranyK 2 Ty .

To build the new adapted mesh, we adopt a two-step proceeitst.we derive a
metricM out of the error estimator (19). Then, we generate the neviinelsiced
by this metric using the metric-based mesh generatbréeFem-++ [20].

To obtainM , we resort to an iterative procedure. At each iteration] seae deal
with three quantities:

i) the actual mesi h(');
(.

i) the new metriav (" computed orT ,";
iii) the updated mesfi (¥ induced bym (* ),

The new metric is predicted by suitably rewriting the locatimator hk (un; Vi)
to single out the geometric information and then by applyangerror equidistri-

bution criterion combined with the minimization of the nuentof elements. The
re-arranged local estimator is

n 2 (0]

h(Un;Vn) = Mk & Tk (Vi Un) Wik (Uni) + TR(Un; Vi) Wik (V) (20)
i=1

wherenk = jRj |1kl 2x > 2 lumps all the are§Kj information,

Ik (Vi Up)

iRl 1k 2

reunve)

Tiﬁ( (Vh;un) = JIIQJI | 1=
1.KI 2K

= T K(UniVh) =
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with i = 1;2, are approximately pointwise values (at least for a seitly ne
mesh), while the anisotropic information associated Wiik collected in the scaled
weights

h [
_ _ 1 . =
Wi (Xh) = Sk I'1xk Gp (Xh) Fuk + P~ 3k Cp () Fak  With  Xn= Un1; Un:2; Vi;

with Gp, ()= Gp, ( )=(jRj ! 1kl 2x). In principle, each termin (20) provides a met-
ric. For practical reasons, however, we merge this infolonab obtain a single met-
ric, thus avoiding metric intersection. To do this, we fallthe approach in Sect. 4
of [26], which allows us to rewrite (20) as

hk (Un;vh) = NMkijk

with h i
T 1 ¢ 1=2
ik= SKrpx&rik+ §r2;KQr2;K ; (21)
where the local matrix
8 2= 2=
G= & TH(Whiun) “Cp(Uni)+ TR(Univh) “Gpy(vh) (22)
i=1

gathers the anisotropic information providedupyandv, suitably weighted via the
local residuals.

We minimize now the number of mesh elements by maximizingtea of each
elementK with an errorequidistributionconstraint, i.e., we enforce that, for each
elementk 2 Th(Hl), hk(un;vh) = nkik = TOEHT h('), whereTOLand #I'h(') are
the user-de ned global tolerance and the number of mesheigsinT h('), respec-

tively. The constant valug Ol=#T h(') is ensured with an element of maximal area
only if j k is minimized with respect tex andr.k, i.e., we solve elementwise the
constrained minimization problem

min ik (rik:sk); 23
sk Lirmk rn;szmnl K( LK SK) ( )
dmn being the Kronecker symbol. For computational convenigalit¢he quantities

appearing in (22) are evaluated on the background Ep'j'd. On the other hand,
the aspect ratisk and the unit vectory.x in (21) represent our actual unknowns.
According to Proposition 4.2 in [26], we can state the dekingnimization result.

Proposition 2. Letf g;.x; gi:k g be the eigenvector-eigenvalue pair@fwith gy.x
O2:k > 0. Then, the minimum (23) is obtained for the choices

1=2
rik=gx and = =—— ; (24)
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yielding the value 2p 01k 02K =2 forjk.

The minimization problem (23) can be solved analytically (24) without resorting
to any numerical optimization tool.

Finally, the optimal metrid (* 9 is generated by exploiting again the equidis-
tribution constraint, i.e., by solving the equations

1=2
iRj 11l 2k 2 2P Gixaen = B(:; and 2K = s= Sk
#HT 2K 02,k

(25)

System (25) provides us with the distinct values
1 gk 2 TOL 1% 1 . 2 TOL ¥
|1k = —p= == - Y P —p= == - :

YTUORT2 G w0 T R 2 Ee w0

(26)

Eventually, the optimal metrig (* 1 is characterized by in (24),/ 1.x and/ 2.k
in (26), withro.x ? rix.

3.2 The Whole Adaptive Procedure

In this section we propose a numerical algorithm which cormabia suitable mini-
mization method for the nonconvex functioddf™ with the mesh adaptation pro-
cedure of the previous section.

The algorithm is a generalization of the Algorithms 2 and 8pmsed in [4]. In
practice, we switch from mesh adaptation, driven by theémleeTOL= REFTOL
1, to minimization ofJfAT, until both the mesh and the functional stagnate to within
given thresholdSMESHTOL 1 andVTOL 1, respectively. The minimization of
the functional exploits the alternate minimization algfom proposed in [8] for deal-
ing with nonconvex functionals, relying on the convexityyoalong the directions
identi ed by up, andwy,. In particular, our new algorithm carries out mesh adapiati

after a maximum numbenMIN of minimization steps. Given an initial mes‘hh(o),
we proceed as follows:

The minimization of the functional with respect tp andvy, is performed by
solving the corresponding Euler-Lagrange equationsedime functional is actually
(strictly) convex with respect to the individual variahlesboth cases, the equations
are standard linear elliptic problems.

The interpolation operatd® n+1(zn) is used to map the nite element function
z, de ned onT," onto the new mesf, "™ 1 before restarting any new optimization
or time loop.

The convergence of the mesh adaptivity is assessed by clugbld relative vari-
ation of the number of elements. The main novelty with resfmethe algorithms in
[4] is that, througmMIN the functionallfT is not necessarily exactly minimized
after the innewhile loop. Algorithms 2 and 3 represent particular cases of the-al



Anisotropic adapted meshes for brittle fractures undemesistrain conditions 15

Algorithm 3.1 OptimizeiMIN-while-Adapt
: Setk= 0,1 = 0;
D Ifk= 0, setvf = 1; elsevi = vy (tx 1);
Setl = 0; errmesk 1; er= 1;
. while errmesh  MESHTQlerr VTOLdo
Seti = 1; err=1;
while err VTOI&i  nMINdo
ub = argminJFAT(z; vh);

222

8: vir = argmindfAT(ul ;s z);
220

9: err= kvt Vikey wy;
10: i+
11: end while
12:  Compute the new metrd (Y based onil, * andvj;;
13:  Build the adapted mesh " ?;
14:  ermesh j#T "V #r Oj=r O,
15:  Sewy= Py j+1(V):
16: I 1+ 1
17: end while ) )
18: up(t) = Py 11 i(ul Hivn(t) = Py 1) k=T,
19: SetT @ =T /%
20: k  k+1;
21: ifk> F, stop; else goto 2.

Nogahrhwnre

rithm above. SelectingMIN= ¥, we recover Algorithm 2, which is suited to deal
with slowly advancing fractures, because the coupling betwoptimization and
adaptation is not so tight. SettimMIN= 1, we get back Algorithm 3, which alter-
nates optimization and mesh adaptation more closely. Hexy@vsuch a case, the
crack evolution may be biased by the mesh which is adaptedrioptimal elds,

Un; Vh. These values afMINrepresent two extreme choices. In general, we may pick
any intermediate value, e.qtMIN= 7 in the section below.

4 Numerical Assessment

We verify Algorithm 3.1 on two numerical tests inspired by IB]. The second test
case turns out to be particularly challenging.

4.1 Traction of a Fiber-Reinforced Matrix

We consider the rectangular dom#f= (0;3) (0;3:5) in Fig. 2 left, comprising a
nonelastic circular ber of radius:8 centered afl:5; 1:5), fort 2 [0; 0:5], uniformly
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LT e
&

?

Fig. 2 Geometric con gurations for the traction of a ber-reinfied matrix (left) and for the crack
branching test (right)

partitioned with a total number df = 50 time steps. On the subdomaditp =
(0:3) (3;3:5) we enforce the loag, withgp = (0;t)". The beris held xed while

a uniform vertical displacement is induced d¢xy on the top side of the matrix. The
other sides of the domain are traction-free. As a functiotino, at the beginning
the matrix behaves elastically; then, an asymmetric crackisnly develops and
eventually cuts the matrix in two parts. The parameterslirabin (3) are set to

Yp Y
e=10% h=10¢3 =g=10" | = m= :
h= @ 1+ p)(1 2p) 21+ p)

whereY = 30 is Young's modulus ang = 0:18 is the Poisson coef cient. The
values of the tolerances required by Algorithm 3.1 are

VTOIl= 5 10 3 CRTOE REFTOE 10 31 MESHTGL10 2

Figure 3 shows the- eld at three time levels as well as the associated anipatro
adapted mesh. At time= 0:25 a crack on top of the ber is created and starts
propagating slowly and symmetrically with respect to therbAt timet = 0:35 the
symmetry is broken and the crack splits the matrix on one asidg Afterwards,

at timet = 0:39, the domain is thoroughly split into two parts. This bebgis not
essentially affected by. Actually, a reduction of this parameter by one order of
magnitude yields the results in Fig. 4, which share the saatieqm as in Fig. 3,
although with a sharper crack. In all cases, the adaptedesesie very ne close
to the fracture and in the area of higher stress. Moreoverctirect path of the
crack is detected in a very ef cient way, i.e., with quite felements. In particular,
in Fig. 3 and 4 (bottom-right), the meshes consist only ofdl&id 12381 elements,
respectively. The maximum aspect ratio of the three meshEgi 3 is 16, 32 and
109.
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Fig. 3 Traction of a ber-reinforced matrix. Time evolution of thg- eld (left): t = 0:25 (top),

t = 0:35 (center), antl= 0:39 (bottom); corresponding adapted meshes (right) @ith10 *
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Fig. 4 Traction of a ber-reinforced matrix. Time evolution of thg- eld (left): t = 0:30 (top),
t = 0:38 (center), antl= 0:40 (bottom); corresponding adapted meshes (right) @ith10 2
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Figure 5 shows the time evolution of the energy. The elasti&gy (dashed line)
is associated with the rstterm in the integral owfin (6), while the ctitious crack
energy (dash-dotted line) represents the second term. [abk line is the sum of
these two contributions. Theoretically, we expect thet®laanergy to disappear
after the collapse of the domain. On the contrary, a residonaigy remains, due to
the regularization parametérin the model. Moreover, three sudden increases of
the crack energy occur: the rst at time= 0:24, when a nite-length crack appears
on top of the ber; the second at tinte= 0:37, when the domain breaks on one side;
and the last takes place when the domain breaks dowvirs & 39. This behavior
is qualitatively comparable with the ones in Fig. 4 in [16fan Fig. 3 in [7]. This
corroborates the fact that anisotropic meshes do not affeatrack dynamics.

4.2 Crack Branching

The domain for the second test case is the cracked rectargasgtic sample shown
in Fig. 2, right. The initial crack is horizontal and paralie the upper end lower
sides of the sample, while a displacement eld of increasimagnitude and xed
orientation g, to thex;-axis, is applied to the horizontal sides. The later crack ev
lution is monitored for several values gf The nal time is set tol = 0:2, and the
total number of uniform time steps 5= 20. The nal time is chosen when the
crack is about to turn towards the bottom right corner of thedin. The key issues
of this problem is the correct prediction of the actual brang angle of the crack,
in particular when the applied displacement eld is not ogbnal to the domain
border. For this purpose, we resort to a suitable mesh atitaptirategy. In partic-

—Total Energy
251 - - -Elastic Energy
- Fracture Energy

0.5

T I I I |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Fig. 5 Traction of a ber-reinforced matrix. Time evolution of tkemergy
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ular, we identifyW with the square domaifi 1:5;1:5)%, Wh = W, [ Wh+ with
Wh =( 1515 ( 15 213)andWp+ =( 1:5/1:5) (1:3;1:5),0pis

( |
' (tcodgyitsingg)  onlgy
©O= " cogq); tsing) onvip @D

and the model parameters are

Yp N S
(1+ p(1 2p)° 2(1+ p)’

with Y = 45 andp = 0:18. The tolerances of Algorithm 3.1 are

e=102 h=105% g=@g=10°% I =

VTOL= 10 4 CRTOE 3 10 % REFTOt 10 %, MESHTGL10 %

Figure 6 gathers the,- eld and the corresponding anisotropic adapted mesh at
the nal time, for several orientationg. The cardinality of the meshes in Fig. 6
is 2941, 1268, 1652, 1302, 1570, 3804, in top-down ordericddhat the mesh
adaptive procedure identi es the con gurations assodatéh g = p=2 andg = 0

as being the most challenging. In all cases, the mesh clesatghes the crack
path, with a very thin thickness of the adapted area. Theoanjgic features of the
meshes are highlighted by the values of the maximum aspgact vehich varies
between 28, fog = p=20, and 384, fog = 0. Moreover, wherg = 0, in contrast

to [7], where it appears an unphysical symmetric crack brang; we obtain a crack
which moves straight a very short distance, before turnimgravards but with a
slightly smaller angle than expected. In practice, we ade &b predict reliably
the crack branching fog & 3 . Figure 7 shows the branching angle as a function
of the orientationg. This angle has been computed by picking the angle at which
the distribution of the unit vectors, .k, gathered in bins of 20 angles each, over
the rectangld0;0:08] [ 0:08;0] is a maximum. On comparing our results with
the ones in [7], we observe a good agreement, with the additicapability of
correctly simulating the physical behavior for3 q . 7, by enlarging the range

of reliability of the numerical tool in [7] wherg & 7 .
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Fig. 6 Crack branching. Distribution of the,- eld around the tip of the initial crack (left) and
nal adapted mesh (right) fog = p=2; p=4; p=6; p=20; p=60; 0, top-down
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Fig. 7 Crack branching. Branching angle as a function of the ing@@slisplacement orientation

5 Conclusions

We have extended the anisotropic approach provided in f{4h®anti-plane case to
the more challenging plane-strain framework. This impires/ing from a scalar to
a vector elastic problem. The proposed Algorithm 3.1 has lséewn to correctly
identifying the physical crack path, under reasonable @dwbf the physical and
algorithmic parameters, aware also of the theoreticat$imi the adopted mechan-
ical model. In particular, in the crack branching test calse,proposed procedure
allowed us to broaden the range of applicability of this mpdéh respect to what
studied in [7]. Another interesting issue to be investigasea proper tuning of the
modeling parameters, such@sh, and also of the physical parametérandm In
Sect. 4.1, we tackle to a some extent the sensitivig/ig highlighting the actual in-
uence of e on the crack thickness. A more thorough investigation has loarried
out in [3] in the anti-plane case. We have also introducedreegdized version of
the algorithm proposed in [4]. In particular, Algorithm Zfnploys the new param-
eter, namelynMIN through which we can adjust in a more precise way the iragrpl
between the minimization of the functional and the adaptetif the mesh. In future
developments, we shall be concerned with the study of marergémathematical
models, such as the ones introduced in [9], for a possiblepanison with actual
experimental tests.
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