Chapter 2
Linear Ill-Posed Problems

Ill-Posed Problems in Image and Signal Processing
WS 2014/2015

Michael Moeller
Optimization and Data Analysis
Department of Mathematics
TU München
What we have seen so far...

- **Differentiation**: Finding \(u(x) \) for given
 \[
 \int_0^x u(y) \, dy
 \]
is **ill-posed**.

- **Inverse heat equation**: Finding \(u(x,0) \) for given
 \[
 u(x,T) = \int_0^{\pi} k(x,y,T)f(y) \, dy,
 \]
 \[
 k(x,y,T) = \frac{2}{\pi} \sum_{n=1}^{\infty} e^{-n^2 T} \sin(nx) \sin(ny).
 \]
is **ill-posed**.

- **Deconvolution**: Finding \(u(x) \) for given
 \[
 \int_{\Omega} k(x-y)u(y) \, dy
 \]
 with smoothing kernel \(k \) is **ill-posed**.

Question

Is the inversion of integral operators ill-posed in general?
Why are problems ill-posed?

We want to study and understand our introductory examples in more detail.
Why are problems ill-posed?

We want to study and understand our introductory examples in more detail.

Observation: Our introductory problems can be written as

\[f = Au \]

for linear operators \(A : X \rightarrow Y \) between Hilbert spaces \(X, Y \).
Why are problems ill-posed?

We want to study and understand our introductory examples in more detail.

Observation: Our introductory problems can be written as

\[f = Au \]

for linear operators \(A : X \rightarrow Y \) between Hilbert spaces \(X, Y \).

Strategy: Understand finite dimensional case first!
Finite dimensional linear operators

Linear operators between two finite dimensional Hilbert spaces: Matrices.
Finite dimensional linear operators

Linear operators between two finite dimensional Hilbert spaces: Matrices.

Making our life easier: Consider a linear operator from a finite dimensional Hilbert space into itself: \(A \in \mathbb{R}^{n \times n} \).
Finite dimensional linear operators

Linear operators between two finite dimensional Hilbert spaces: Matrices.

Making our life easier: Consider a linear operator from a finite dimensional Hilbert space into itself: $A \in \mathbb{R}^{n \times n}$.

Corresponding finite dimensional linear inverse problem: Find u from given

$$f = Au$$
Finite dimensional linear operators

Linear operators between two finite dimensional Hilbert spaces: Matrices.

Making our life easier: Consider a linear operator from a finite dimensional Hilbert space into itself: $A \in \mathbb{R}^{n \times n}$.

Corresponding finite dimensional linear inverse problem: Find u from given

$$f = Au$$

Making our life even easier: A is symmetric and positive definite.
Finite dimensional linear operators

Symmetric positive definite $A \in \mathbb{R}^{n \times n}$:

$$A = VSV^T,$$

with

- diagonal matrix S, $S_{i,i} = \lambda_i$ eigenvalues,
- $\lambda_1 \geq ... \geq \lambda_n > 0$,
- V orthonormal matrix of eigenvectors.

Assume scaling: $\lambda_1 = 1$. Condition number $\kappa = \frac{1}{\lambda_n}$.
Finite dimensional linear operators

Assume \(f = Au, \ f^\delta = Au^\delta \), with \(\|f^\delta - f\| \leq \delta \):
Finite dimensional linear operators

Assume \(f = Au, \ f^\delta = Au^\delta \), with \(\| f^\delta - f \| \leq \delta \):

\[
\begin{align*}
u^\delta - u &= VS^{-1} V^T (f^\delta - f) \\
\Rightarrow \| u^\delta - u \| &= \| VS^{-1} V^T (f^\delta - f) \| \\
&= \| S^{-1} V^T (f^\delta - f) \| \\
&\leq \frac{1}{\lambda_n} \| V^T (f^\delta - f) \| \\
&= \frac{\delta}{\lambda_n} = \kappa \delta
\end{align*}
\]
Finite dimensional linear operators

Assume \(f = Au, f^\delta = Au^\delta \), with \(\| f^\delta - f \| \leq \delta \):

\[
\begin{align*}
 u^\delta - u &= VS^{-1}V^T(f^\delta - f) \\
 \Rightarrow \| u^\delta - u \| &= \| VS^{-1}V^T(f^\delta - f) \| \\
 &= \| S^{-1}V^T(f^\delta - f) \| \\
 &\leq \frac{1}{\lambda_n} \| V^T(f^\delta - f) \| \\
 &= \frac{\delta}{\lambda_n} = \kappa \delta
\end{align*}
\]

→ Noise amplification: reciprocal of smallest eigenvalue!

→ Continuous dependence on the data!

→ Well-posed, but for small \(\lambda_n \) ill-conditioned!

→ In infinite dimensions: infinitely many \(\lambda_n \to 0 \)!
Question

What can we do against the instability?

Idea:

• Approximate A by $A_\alpha = A + \alpha I$ with $\alpha > 0$.

• The smallest eigenvalue is $\lambda_n + \alpha > \alpha$.

• Approximate the solution to $Au = f$ for given noisy data f_δ by $u_\alpha = (A - I)^{-1} f_\delta$.
Finite dimensional linear operators

Question
What can we do against the instability?

Idea:
- Approximate A by $A_\alpha = A + \alpha I$ with $\alpha > 0$.
- The smallest eigenvalue is $\lambda_n + \alpha > \alpha$.
- Approximate the solution to $Au = f$ for given noisy data f^δ by $u_\alpha = A_\alpha^{-1} f^\delta$.

Computation on the board.
Linear inverse problems in infinite dimensions.
Some basics...

Definition: Banach space
A normed vector space X which is complete is called a Banach space. Being complete means that every Cauchy sequence converges in X.

Definition: Hilbert space
A vector space X equipped with a scalar product $\langle \cdot, \cdot \rangle$ which is complete with respect to the induced norm $\|x\| = \sqrt{\langle x, x \rangle}$ is called a Hilbert space.

Convention
Unless stated otherwise, X and Y are real Hilbert spaces.
Some basics...

Definition: Banach space

A normed vector space X which is *complete* is called a *Banach space*. Being complete means that every Cauchy sequence converges in X.
Some basics...

Definition: Banach space

A normed vector space X which is *complete* is called a *Banach space*. Being complete means that every Cauchy sequence converges in X.

Definition: Hilbert space

A vector space X equipped with a scalar product $\langle \cdot, \cdot \rangle$ which is complete with respect to the induced norm $\|x\| = \sqrt{\langle x, x \rangle}$ is called a *Hilbert space*.
Some basics...

Definition: Banach space

A normed vector space X which is *complete* is called a *Banach space*. Being complete means that every Cauchy sequence converges in X.

Definition: Hilbert space

A vector space X equipped with a scalar product $\langle \cdot, \cdot \rangle$ which is complete with respect to the induced norm $\|x\| = \sqrt{\langle x, x \rangle}$ is called a *Hilbert space*.

Convention

Unless stated otherwise, X and Y are real Hilbert spaces.
Proposition: Closed subspaces

A nonempty subspace $M \subset X$ is closed if and only if $(x_n) \subset M$, \(\lim_{n \to \infty} x_n = x\) implies $x \in M$.
Proposition: Closed subspaces

A nonempty subspace $M \subset X$ is closed if and only if $(x_n) \subset M$, $\lim_{n \to \infty} x_n = x$ implies $x \in M$.

Definition: Closure

The closure \overline{M} of $M \subset X$ is defined as

$$\overline{M} = M \cup \left\{ x \mid \exists (x_n) \in M \text{ with } \lim_{n \to \infty} x_n = x \right\}$$
Definition: Orthogonal complement

The *orthogonal complement* of the set $M \subset X$ is

$$M^\perp = \{ x \in X \mid \langle x, m \rangle = 0 \ \forall \ m \in M \}.$$
Banach and Hilbert spaces

Definition: Orthogonal complement

The *orthogonal complement* of the set $M \subset X$ is

$$M^\perp = \{ x \in X \mid \langle x, m \rangle = 0 \ \forall m \in M \}. $$

Theorem: Direct sum

Let $M \subset X$ be any closed subspace of X. Then

$$X = M + M^\perp.$$
Linear operators

Definition: Linear operators

A mapping $A : \mathcal{D}(A) \subset X \rightarrow Y$ is called a *linear operator*, if the domain $\mathcal{D}(A)$ is a subspace of X and for all $x_1, x_2 \in \mathcal{D}(A)$, and all $\alpha \in \mathbb{R}$

\[
A(x_1 + x_2) = Ax_1 + Ax_2 \\
A(\alpha x_1) = \alpha Ax_1
\]
Definition: Boundedness

We say that a linear operator $A : \mathcal{D}(A) \subset X \to Y$ is bounded if there exists a $c \in \mathbb{R}$ such that for all $x \in \mathcal{D}(A)$

$$\|Ax\|_Y \leq c\|x\|_X.$$
Linear operators

Definition: Boundedness

We say that a linear operator $A : D(A) \subset X \rightarrow Y$ is bounded if there exists a $c \in \mathbb{R}$ such that for all $x \in D(A)$

$$\|Ax\|_Y \leq c\|x\|_X.$$

Examples

- If $A : X \rightarrow Y$ is a linear operator with $\dim(X) < \infty$, then A is bounded.
- First lecture: The derivative operator $\partial_x : C^1([0, 1]) \subset L^2([0, 1]) \rightarrow L^2([0, 1])$ is unbounded. (Example with $\sin(2\pi kx)$)
Theorem: Boundedness and Continuity

Let $A : \mathcal{D}(A) \subset X \to Y$ be a linear operator. Then the following three statements are equivalent:

- A is continuous.
- A is bounded.
- A is continuous at $x = 0$.

Proof: Exercises
Theorem: Boundedness and Continuity

Let \(A : \mathcal{D}(A) \subset X \to Y \) be a linear operator. Then the following three statements are equivalent:

- \(A \) is continuous.
- \(A \) is bounded.
- \(A \) is continuous at \(x = 0 \).

Proof: Exercises

Notation

- \(\mathcal{L}(X, Y) \) set of all continuous linear operators from \(X \) to \(Y \).
- \(\mathcal{N}(A) := \{ x \in X \mid Ax = 0 \} \) *nullspace* of \(A \)
- \(\mathcal{R}(A) := \{ y \in Y \mid \exists x \in X \text{ with } Ax = y \} \) *range* of \(A \)
Definition: Open

An operator $A : X \to Y$ is called open, if for every open set $M \subset X$ in X the set $A(M) \subset Y$ is open in Y.

\footnote{See D. Werner, Funktionalanalysis. Springer 2005.}
Definition: Open

An operator $A : X \to Y$ is called open, if for every open set $M \subset X$ in X the set $A(M) \subset Y$ is open in Y.

Theorem: Open mapping theorem

If $A \in \mathcal{L}(X, Y)$ is surjective, then A is open. \(^1\)

\(^1\)See D. Werner, Funktionalanalysis. Springer 2005.
Linear operator equations

The previous analysis was done for symmetric positive definite matrices $A \in \mathbb{R}^{n \times n}$. What can we do for a general $A \in \mathcal{L}(X,Y)$?

What could happen?

• If A is not surjective, $Au = f$ might not have a solution.

Definition

We call u a least-squares solution of $Au = f$ if $\|Au - f\| = \inf\{\|Av - f\| | v \in X\}$.

• If A is not injective, the least-squares solution might not be unique.

Definition

We call u a minimal-norm solution of $Au = f$ if $\|u\| = \inf\{\|v\| | v \text{ is least-squares solution of } Au = f\}$.
Linear operator equations

Question

The previous analysis was done for symmetric positive definite matrices $A \in \mathbb{R}^{n \times n}$. What can we do for a general $A \in \mathcal{L}(X, Y)$?

What could happen?
Linear operator equations

Question

The previous analysis was done for symmetric positive definite matrices $A \in \mathbb{R}^{n \times n}$. What can we do for a general $A \in \mathcal{L}(X, Y)$?

What could happen?

- If A is not surjective, $Au = f$ might not have a solution.
Linear operator equations

Question

The previous analysis was done for symmetric positive definite matrices $A \in \mathbb{R}^{n \times n}$. What can we do for a general $A \in \mathcal{L}(X, Y)$?

What could happen?

- If A is not surjective, $Au = f$ might not have a solution.

Definition

We call u a least-squares solution of $Au = f$ if

$$\|Au - f\| = \inf\{\|Av - f\| \mid v \in X\}$$
Linear operator equations

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>The previous analysis was done for symmetric positive definite matrices $A \in \mathbb{R}^{n \times n}$. What can we do for a general $A \in \mathcal{L}(X, Y)$?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>What could happen?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• If A is not surjective, $Au = f$ might not have a solution.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>We call u a least-squares solution of $Au = f$ if</td>
</tr>
</tbody>
</table>

$$
\|Au - f\| = \inf\{|Av - f| \mid v \in X\}
$$

• If A is not injective, the least-squares solution might not be unique.
Linear operator equations

Question

The previous analysis was done for symmetric positive definite matrices \(A \in \mathbb{R}^{n \times n} \). What can we do for a general \(A \in \mathcal{L}(X, Y) \)?

What could happen?

- If \(A \) is not surjective, \(Au = f \) might not have a solution.

Definition

We call \(u \) a least-squares solution of \(Au = f \) if

\[
\|Au - f\| = \inf \{\|Av - f\| \mid v \in X\}
\]

- If \(A \) is not injective, the least-squares solution might not be unique.

Definition

We call \(u \) a minimal-norm solution of \(Au = f \) if

\[
\|u\| = \inf \{\|v\| \mid v \text{ is least-squares solution of } Au = f\}
\]
Linear operator equations

Question

Can we define a linear operator that computes minimal norm solutions?
Question

Can we define a linear operator that computes minimal norm solutions?

Definition (Moore-Penrose inverse)

Let $A \in \mathcal{L}(X, Y)$ and let $\tilde{A} : \mathcal{N}(A) \to \mathcal{R}(A)$ denote its restriction. Then the Moore-Penrose generalized inverse A^\dagger is defined as the unique linear extension of \tilde{A}^{-1} to

$$\mathcal{D}(A^\dagger) := \mathcal{R}(A) \oplus \mathcal{R}(A) \perp$$

with $\mathcal{N}(A^\dagger) = \mathcal{R}(A) \perp$.
The Moore-Penrose inverse is well-defined.
The Moore-Penrose inverse is well-defined.

Theorem: Moore-Penrose equations

The Moore-Penrose generalized inverse A^\dagger meets the following four Moore-Penrose equations

1. $AA^\dagger A = A$
2. $A^\dagger AA^\dagger = A^\dagger$
3. $A^\dagger A = I - P$
4. $AA^\dagger = Q_{|\mathcal{D}(A^\dagger)}$

where $P : X \to \mathcal{N}(A)$ and $Q : Y \to \overline{\mathcal{R}(A)}$ are the orthogonal projectors onto the nullspace of A, $\mathcal{N}(A)$, and onto the closure of the range of A, $\overline{\mathcal{R}(A)}$, respectively.
Linear operator equations

Theorem: Minimal-norm solutions

For a given $f \in \mathcal{D}(A^\dagger)$, the equation $Ax = f$ has a unique minimal-norm solution given by

$$x^\dagger := A^\dagger f.$$

The set of all least-squares solutions is given by $\{x^\dagger\} + \mathcal{N}(A)$.

Proof: Board.
Gaussian normal equation

A word about adjoint operators...
Gaussian normal equation

A word about adjoint operators...

Theorem: Gaussian normal equation

For a given $f \in \mathcal{D}(A^\dagger)$, $x \in X$ is a least-squares solution of $Ax = f$ if and only if x satisfies the Gaussian normal equation

$$A^* Ax = A^* f.$$

Proof: Board.
Gaussian normal equations

Observations:

- $x^\dagger = A^\dagger y$ is the minimal-norm solution, i.e. the least-squares solution with minimal norm.
Observations:

- $x^\dagger = A^\dagger y$ is the minimal-norm solution, i.e. the least-squares solution with minimal norm.
- All least-squares solutions meet

$$A^* Ax = A^* y \quad (1)$$
Gaussian normal equations

Observations:

- $\mathbf{x}^\dagger = \mathbf{A}^\dagger \mathbf{y}$ is the minimal-norm solution, i.e. the least-squares solution with minimal norm.
- All least-squares solutions meet
 \[
 \mathbf{A}^* \mathbf{A} \mathbf{x} = \mathbf{A}^* \mathbf{y}
 \]
 (1)
- $\mathbf{A}^\dagger \mathbf{y} = (\mathbf{A}^* \mathbf{A})^\dagger \mathbf{A}^* \mathbf{y}$.
Gaussian normal equations

Observations:

- $x^\dagger = A^\dagger y$ is the minimal-norm solution, i.e. the least-squares solution with minimal norm.
- All least-squares solutions meet
 \[A^* A x = A^* y \] (1)
- \[A^\dagger y = (A^* A)^\dagger A^* y. \]
- Possible to approximate $A^* A$ instead of A.

(cf. Landweber iteration!)
Linear operator equations

For any linear operator equation $f = Au, \ A \in \mathcal{L}(X, Y)$, we now have a (possibly naive) way of finding a solution via $u = A^\dagger f$.

When is this approach naive?
Linear operator equations

For any linear operator equation $f = Au$, $A \in \mathcal{L}(X, Y)$, we now have a (possibly naive) way of finding a solution via $u = A^\dagger f$.

When is this approach naive?

Proposition: Discontinuity of A^\dagger

A^\dagger is continuous if and only if $\mathcal{R}(A)$ is closed.

Proof: Board.
Compact linear operators

Definition: Compact linear operator

$A \in \mathcal{L}(X, Y)$ is said to be compact if for every bounded sequence $\{x_n\} \subset X$, $\{Ax_n\}$ has a convergent subsequence.
Definition: Compact linear operator

A ∈ \mathcal{L}(X, Y) is said to be compact if for every bounded sequence \{x_n\} ⊂ X, \{Ax_n\} has a convergent subsequence.

Remark: Be careful with the dimensions of your space!

Example: Identity operator on X for finite and infinite dimensional X.
Theorem: Ill-posedness of compact linear operators

Let $A \in \mathcal{L}(X, Y)$ be compact, and let the dimension of $\mathcal{R}(A)$ be infinite. Then A^\dagger is discontinuous.

Proof: Board.
Compact linear operators

What kind of operators are compact?
Compact linear operators

What kind of operators are compact?

Theorem: Operators with Hilbert-Schmidt kernel are compact

Let

\[Au(x) = \int_\Omega k(x, y)u(y) \, dy \]

with kernel \(k \in L^2(\Omega \times \Omega) \). Then \(A \in \mathcal{L}(L^2(\Omega), L^2(\Omega)) \) is compact.

Proof: Board.

A kernel \(k \in L^2(\Omega \times \Omega) \) is called a Hilbert-Schmidt kernel from \(\Omega \times \Omega \to \mathbb{R} \).
Examples for compact linear operators

- **Differentiation**: Finding $u(x)$ for given
 \[
 \int_0^x u(y) \, dy
 \]

 is ill-posed.
Examples for compact linear operators

- **Differentiation**: Finding $u(x)$ for given
 \[
 \int_0^x u(y) dy
 \]
 is **ill-posed**.

- **Inverse heat equation**: Finding $u(x, 0)$ for given
 \[
 u(x, T) = \int_0^\pi k(x, y, T)f(y) dy,
 \]
 \[
 k(x, y, T) = \frac{2}{\pi} \sum_{n=1}^{\infty} e^{-n^2 T} \sin(nx) \sin(ny).
 \]
 is **ill-posed**.
Examples for compact linear operators

- **Differentiation**: Finding $u(x)$ for given
 \[\int_0^x u(y) dy \]
 is ill-posed.

- **Inverse heat equation**: Finding $u(x, 0)$ for given
 \begin{align*}
 u(x, T) &= \int_0^\pi k(x, y, T)f(y) dy, \\
 k(x, y, T) &= \frac{2}{\pi} \sum_{n=1}^{\infty} e^{-n^2 T} \sin(nx) \sin(ny).
 \end{align*}
 is ill-posed.

- **Deconvolution**: Finding $u(x)$ for given
 \[\int_{\Omega} k(x - y)u(y) dy \]
 with smoothing kernel k is ill-posed.
Compact linear operators

What kind of operators are compact?

Facts about compact operators

- Let $A : X \to Y$ be a compact linear operator. Then A is bounded, i.e. $A \in \mathcal{L}(X, Y)$.

- Let $A \in \mathcal{L}(X, Y)$ be compact and $B \in \mathcal{L}(Z, X)$. Then AB is compact.

- Let $A \in \mathcal{L}(X, Y)$ and $B \in \mathcal{L}(Z, X)$ be compact. Then AB is compact.

- Let $A \in \mathcal{L}(X, Y)$ be compact. Then A^* is compact.

X, Y, Z Hilbert spaces.
A little summary

What did we learn so far?

- No solution exists
A little summary

What did we learn so far?

- No solution exists → least squares solution.
A little summary

What did we learn so far?

- No solution exists \rightarrow least squares solution.
- Solution not unique
A little summary

What did we learn so far?

- No solution exists \rightarrow least squares solution.
- Solution not unique \rightarrow minimal norm solution.
A little summary

What did we learn so far?

• No solution exists \rightarrow least squares solution.
• Solution not unique \rightarrow minimal norm solution.
• Linear operator for the above
A little summary

What did we learn so far?

- No solution exists \rightarrow least squares solution.
- Solution not unique \rightarrow minimal norm solution.
- Linear operator for the above \rightarrow Moore-Penrose inverse.
A little summary

What did we learn so far?

• No solution exists → least squares solution.

• Solution not unique → minimal norm solution.

• Linear operator for the above → Moore-Penrose inverse.

• Third criterion for well posedness?
A little summary

What did we learn so far?

• No solution exists \rightarrow least squares solution.
• Solution not unique \rightarrow minimal norm solution.
• Linear operator for the above \rightarrow Moore-Penrose inverse.
• Third criterion for well posedness? $\rightarrow A^\dagger$ continuous.
A little summary

What did we learn so far?

• No solution exists \rightarrow least squares solution.
• Solution not unique \rightarrow minimal norm solution.
• Linear operator for the above \rightarrow Moore-Penrose inverse.
• Third criterion for well posedness? \rightarrow A^\dagger continuous.
• A^\dagger continuous
A little summary

What did we learn so far?

- No solution exists \rightarrow least squares solution.
- Solution not unique \rightarrow minimal norm solution.
- Linear operator for the above \rightarrow Moore-Penrose inverse.
- Third criterion for well posedness? \rightarrow A^\dagger continuous.
- A^\dagger continuous $\iff \mathcal{R}(A)$ closed.
A little summary

What did we learn so far?

- No solution exists \rightarrow least squares solution.
- Solution not unique \rightarrow minimal norm solution.
- Linear operator for the above \rightarrow Moore-Penrose inverse.
- Third criterion for well posedness? $\rightarrow A^\dagger$ continuous.
- A^\dagger continuous $\iff \mathcal{R}(A)$ closed.
- A compact, $\mathcal{R}(A)$ infinite dimensional
A little summary

What did we learn so far?

- No solution exists → least squares solution.
- Solution not unique → minimal norm solution.
- Linear operator for the above → Moore-Penrose inverse.
- Third criterion for well posedness? \(A^\dagger \) continuous.
 - \(A^\dagger \) continuous \(\iff \mathcal{R}(A) \) closed.
 - A compact, \(\mathcal{R}(A) \) infinite dimensional \(\Rightarrow A^\dagger \) not continuous.
A little summary

What did we learn so far?

- No solution exists \rightarrow least squares solution.
- Solution not unique \rightarrow minimal norm solution.
- Linear operator for the above \rightarrow Moore-Penrose inverse.
- Third criterion for well posedness? $\rightarrow A^\dagger$ continuous.
- A^\dagger continuous $\iff \mathcal{R}(A)$ closed.
- A compact, $\mathcal{R}(A)$ infinite dimensional $\Rightarrow A^\dagger$ not continuous.
- Integral equation with H.S. kernel
A little summary

What did we learn so far?

- No solution exists \rightarrow least squares solution.
- Solution not unique \rightarrow minimal norm solution.
- Linear operator for the above \rightarrow Moore-Penrose inverse.
- Third criterion for well posedness? $\rightarrow A^\dagger$ continuous.
- A^\dagger continuous $\iff \mathcal{R}(A)$ closed.
- A compact, $\mathcal{R}(A)$ infinite dimensional $\Rightarrow A^\dagger$ not continuous.
- Integral equation with H.S. kernel $\Rightarrow A$ compact
Study compact lin. operators A!
How does A^\dagger look like?
Theorem: Eigendecomposition

Let $A \in \mathcal{L}(X, X)$ be self-adjoint and compact. Then there exist at most countably many nonzero eigenvalues $\{\lambda_n\}, \ n \in I$, of A. All eigenvalues are real and for a set of orthonormal eigenvectors $\{u_n\}$ with $\|u_n\| = 1$ one has

$$Ax = \sum_{n \in I} \lambda_i \langle x, u_n \rangle u_n$$

Eigendecomposition

Requirements for the eigendecomposition:
Eigendecomposition

Requirements for the eigendecomposition:

- A is a compact linear operator. (OK!)
Eigendecomposition

Requirements for the eigendecomposition:

• A is a compact linear operator. (OK!)
• $A \in \mathcal{L}(X, X)$ is self-adjoint. (Too restrictive!)
Eigendecomposition

Requirements for the eigendecomposition:

• A is a compact linear operator. (OK!)
• $A \in \mathcal{L}(X, X)$ is self-adjoint. (Too restrictive!)

Ideas: If $A \in \mathcal{L}(X, Y)$ is compact ...

• ... then $B := A^* A$ is compact and self-adjoint.

\[Bx = \sum_{n \in I} \sigma_n^2 u_n \langle x, u_n \rangle \quad \forall x \in X \]
Eigendecomposition

Requirements for the eigendecomposition:
- A is a compact linear operator. (OK!)
- $A \in \mathcal{L}(X, X)$ is self-adjoint. (Too restrictive!)

Ideas: If $A \in \mathcal{L}(X, Y)$ is compact ...
- ... then $B := A^* A$ is compact and self-adjoint.

 $$Bx = \sum_{n \in I} \sigma_n^2 u_n \langle x, u_n \rangle \quad \forall x \in X$$

- ... then $C := AA^*$ is compact and self-adjoint.

 $$Cy = \sum_{n \in \tilde{I}} \tilde{\sigma}_n^2 v_n \langle y, v_n \rangle \quad \forall y \in Y$$

Further computations on the board.
Singular value decomposition

Singular value decomposition (SVD)

Any compact linear operator $A \in \mathcal{L}(X, Y)$ has a representation

$$Ax = \sum_{n \in I} \sigma_n \langle x, u_n \rangle v_n$$

$$A^* y = \sum_{n \in I} \sigma_n \langle y, v_n \rangle u_n$$

with the orthonormal singular vectors u_n and v_n, and singular values $\sigma_n > 0$.
Singular value decomposition

Singular value decomposition (SVD)

Any compact linear operator \(A \in \mathcal{L}(X, Y) \) has a representation

\[
Ax = \sum_{n \in I} \sigma_n \langle x, u_n \rangle v_n
\]

\[
A^* y = \sum_{n \in I} \sigma_n \langle y, v_n \rangle u_n
\]

with the orthonormal singular vectors \(u_n \) and \(v_n \), and singular values \(\sigma_n > 0 \).

Convention: \(\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \ldots \)
Singular value decomposition

Singular value decomposition (SVD)

Any compact linear operator $A \in \mathcal{L}(X, Y)$ has a representation

$$Ax = \sum_{n \in I} \sigma_n \langle x, u_n \rangle v_n$$

$$A^* y = \sum_{n \in I} \sigma_n \langle y, v_n \rangle u_n$$

with the orthonormal *singular vectors* u_n and v_n, and *singular values* $\sigma_n > 0$.

Convention: $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \ldots$

Sanity check:

$$\left\| \sum_{n=1}^{N} \sigma_n \langle x, u_n \rangle v_n \right\|^2 = \sum_{n=1}^{N} \sigma_n^2 \langle x, u_n \rangle^2 \leq \sigma_1 \sum_{n=1}^{N} \langle x, u_n \rangle^2 \leq \sigma_1 \|x\|^2$$
Singular value decomposition

Can we use the SVD for the Moore-Penrose inverse?

Some considerations yield

Singular value representation of A

For $y \in \text{dom}(A^\dagger)$ it holds that

$$A^\dagger y = \sum_{n \in I} \sigma_n \langle y, v_n \rangle u_n.$$

Proof that compact linear operators yield ill-posed problems:

$$\|A^\dagger v_n\| = \sigma_n.$$
Singular value decomposition

Can we use the SVD for the Moore-Penrose inverse?

Some considerations yield

Singular value representation of A^\dagger

For $y \in \mathcal{D}(A^\dagger)$ it holds that

$$A^\dagger y = \sum_{n \in I} \frac{1}{\sigma_n} \langle y, v_n \rangle u_n.$$
Singular value decomposition

Can we use the SVD for the Moore-Penrose inverse?

Some considerations yield

Singular value representation of A^\dagger

For $y \in \mathcal{D}(A^\dagger)$ it holds that

$$A^\dagger y = \sum_{n \in I} \frac{1}{\sigma_n} \langle y, v_n \rangle u_n.$$

Proof that compact linear operators yield ill-posed problems:

$$\|A^\dagger v_n\| = \frac{1}{\sigma_n}.$$
Singular value decomposition

Can we use the SVD for the Moore-Penrose inverse?

Some considerations yield

Singular value representation of A^\dagger

For $y \in D(A^\dagger)$ it holds that

$$A^\dagger y = \sum_{n \in I} \frac{1}{\sigma_n} \langle y, v_n \rangle u_n.$$

Proof that compact linear operators yield ill-posed problems:

$$\|A^\dagger v_n\| = \frac{1}{\sigma_n}.$$

Theorem: Singular values of compact operators

Let $A \in \mathcal{L}(X, Y)$ be compact. The zero is the only possible accumulation point for the singular values σ_n.

Proof: Exercise.
Singular value decomposition

From

\[A^\dagger y = \sum_{n \in I} \frac{1}{\sigma_n} \langle y, v_n \rangle u_n \]

we can see

- errors corresponding to \(v_n \) are amplified by \(\frac{1}{\sigma_n} \),
Singular value decomposition

From

\[A^\dagger y = \sum_{n \in I} \frac{1}{\sigma_n} \langle y, v_n \rangle u_n \]

we can see

- errors corresponding to \(v_n \) are amplified by \(\frac{1}{\sigma_n} \),

- errors corresponding to large \(n \) (“high frequencies”) are amplified much stronger,
Singular value decomposition

From

\[A^\dagger y = \sum_{n \in I} \frac{1}{\sigma_n} \langle y, v_n \rangle u_n \]

we can see

- errors corresponding to \(v_n \) are amplified by \(\frac{1}{\sigma_n} \),

- errors corresponding to large \(n \) ("high frequencies") are amplified much stronger,

- the faster \(\sigma_n \) decays, the more severe the error amplification.
Singular value decomposition

<table>
<thead>
<tr>
<th>Definition: Classification of ill-posedness</th>
</tr>
</thead>
<tbody>
<tr>
<td>A problem $Au = f$ with a compact linear operator $A \in \mathcal{L}(X, Y)$ with infinite dimensional range is called</td>
</tr>
</tbody>
</table>

- **Mildly ill-posed** if there exist a $\gamma \leq 1$ and $C > 0$, such that $\sigma_n \geq Cn^{-\gamma}$ for all n.

- **Moderately ill-posed** if it is not mildly ill-posed but there exist a $\gamma > 1$ and $C > 0$, such that $\sigma_n \geq Cn^{-\gamma}$ for all n.

- **Severly ill-posed** if the singular values decay faster than with polynomial speed.

Example: Differentiation
Definition: Classification of ill-posedness

A problem $Au = f$ with a compact linear operator $A \in \mathcal{L}(X, Y)$ with infinite dimensional range is called

- **Mildly ill-posed** if there exist a $\gamma \leq 1$ and $C > 0$, such that $\sigma_n \geq Cn^{-\gamma}$ for all n.

Example: Differentiation
<table>
<thead>
<tr>
<th>Definition: Classification of ill-posedness</th>
</tr>
</thead>
<tbody>
<tr>
<td>A problem $Au = f$ with a compact linear operator $A \in \mathcal{L}(X, Y)$ with infinite dimensional range is called</td>
</tr>
<tr>
<td>- Mildly ill-posed if there exist a $\gamma \leq 1$ and $C > 0$, such that $\sigma_n \geq Cn^{-\gamma}$ for all n.</td>
</tr>
<tr>
<td>- Moderately ill-posed if it is not mildly ill-posed but there exist a $\gamma > 1$ and $C > 0$, such that $\sigma_n \geq Cn^{-\gamma}$ for all n.</td>
</tr>
</tbody>
</table>
Singular value decomposition

Definition: Classification of ill-posedness

A problem \(Au = f \) with a compact linear operator \(A \in \mathcal{L}(X, Y) \) with infinite dimensional range is called

- **Mildly ill-posed** if there exist a \(\gamma \leq 1 \) and \(C > 0 \), such that \(\sigma_n \geq Cn^{-\gamma} \) for all \(n \).

- **Moderately ill-posed** if it is not mildly ill-posed but there exist a \(\gamma > 1 \) and \(C > 0 \), such that \(\sigma_n \geq Cn^{-\gamma} \) for all \(n \).

- **Severly ill-posed** if the singular values decay faster than with polynomial speed.

Example: Differentiation
Summary

What we have learned so far:

- Inversion of compact $A \in \mathcal{L}(X, Y)$, $\dim(\mathcal{R}(A)) = \infty$, is ill-posed!
Summary

What we have learned so far:

- Inversion of compact $A \in \mathcal{L}(X, Y)$, $\dim(\mathcal{R}(A)) = \infty$, is ill-posed!
- We have

$$A^\dagger y = \sum_{n=1}^{\infty} \frac{1}{\sigma_n} \langle y, v_n \rangle u_n$$

- The decay of σ_n causes the ill-posedness.
- In finite dimensions, small $\sigma_n \rightarrow$ ill-conditioned problem.

Next chapter: Can we modify the σ_n to obtain stability?
Summary

What we have learned so far:

- Inversion of compact $A \in \mathcal{L}(X, Y)$, $\dim(\mathcal{R}(A)) = \infty$, is ill-posed!
- We have
 \[A^\dagger y = \sum_{n=1}^{\infty} \frac{1}{\sigma_n} \langle y, v_n \rangle u_n \]
- The decay of σ_n causes the ill-posedness.
Summary

What we have learned so far:

- Inversion of compact $A \in \mathcal{L}(X, Y)$, $\dim(\mathcal{R}(A)) = \infty$, is ill-posed!
- We have
 \[A^\dagger y = \sum_{n=1}^{\infty} \frac{1}{\sigma_n} \langle y, v_n \rangle u_n \]
- The decay of σ_n causes the ill-posedness.
- In finite dimensions, small $\sigma_n \rightarrow$ ill-conditioned problem.
Summary

What we have learned so far:

- Inversion of compact $A \in \mathcal{L}(X, Y)$, $\dim(\mathcal{R}(A)) = \infty$, is ill-posed!
- We have
 $$A^\dagger y = \sum_{n=1}^{\infty} \frac{1}{\sigma_n} \langle y, v_n \rangle u_n$$
- The decay of σ_n causes the ill-posedness.
- In finite dimensions, small $\sigma_n \rightarrow$ ill-conditioned problem.

Next chapter: Can we modify the σ_n to obtain stability?