Gaussian normal equation

Theorem 1. Let \(y \in D(A^\dagger) \). Then \(x \in X \) is a least-squares solution of \(Ax = y \) if and only if the normal equation
\[
A^*Ax = A^*y
\]
holds.

Proof. An element \(x \in X \) is a least-squares solution if and only if \(Ax \) is the projection of \(y \) onto \(R(A) \), which is equivalent to \(Ax - y \in R(A)^\perp \). Since \(R(A)^\perp = N(A^*) \), this is equivalent to \(A^*(Ax - y) = 0 \). \(\square \)