What the TV-semnorn means

Consider the BV-seminorm

\[|u|_{BV} := \sup_{\phi \in C^\infty_c(\Omega, \mathbb{R}^n), |\phi(x)|\leq 1} \int_\Omega u \nabla \cdot \phi \, dx. \]

Let us look at some special cases.

- **Let** \(u \in C^1 \). Then
 \[
 \int_\Omega u \nabla \cdot \phi \, dx = \int_\Omega \nabla u \cdot \phi \, dx.
 \]
 For non-zero derivatives the supremum over the \(\phi \) would be attained for
 \[
 \phi = \frac{\nabla u}{|\nabla u|}
 \]
 and we can use the density of \(C^\infty_c \) in \(C_c \) to show that
 \[
 |u|_{BV} = \int \sqrt{(\partial_x u)^2 + (\partial_y u)^2} \, dx =: \|\nabla u\|_{2,1}.
 \]
 For a \(u \) with zero derivatives one can extend the above \(\phi \) from the set of \(\nabla u \neq 0 \) to the whole domain \(\Omega \) and still approximate it arbitrarily closely with \(C^\infty_c \) functions.

- **For** \(u \in W^{1,1} \) we can repeat the same arguments as in the previous case (along with the density of \(C^\infty_c(\Omega, \mathbb{R}^n) \) in \(L^2 \)) and also obtain \(|u|_{BV} = \|\nabla u\|_{2,1} \).

- **Let us consider**
 \[
 u(x) = \begin{cases}
 1 & \text{for } x \in D \\
 0 & \text{else.}
 \end{cases}
 \]
 for a piecewise smooth \(\partial D \), i.e. the example we previously used to show that \(W^{1,1} \) is too small to contain all reasonable images. We obtain
 \[
 |u|_{BV} = \sup_{\phi \in C^\infty_c(\Omega, \mathbb{R}^n), |\phi(x)|\leq 1} \int_\Omega u \nabla \cdot \phi \, dx
 = \sup_{\phi \in C^\infty_c(\Omega, \mathbb{R}^n), |\phi(x)|\leq 1} \int_D \nabla \cdot \phi \, dx
 = \sup_{\phi \in C^\infty_c(\Omega, \mathbb{R}^n), |\phi(x)|\leq 1} \int_{\partial D} \phi \cdot n \, d\sigma
 = \int_{\partial D} d\sigma,
 \]
 such that the total variation is finite as long as \(\partial D \) has a finite \(n-1 \) dimensional Hausdorff-measure. We can see that in this case the total variation is nothing but the length of the curve \(\partial D \).

- **Another intuition of what the total variation means** can be obtained geometrically for \(\Omega = [a,b] \). If you like hiking and climbing, you are very familiar with the total variation, since it is nothing but the sum of total altitude difference.