Problem Set 9

1. Prove the following statements.

(a) Let G be an arbitrary abelian and let U be an open subset of a topological space X. For a function $f : U \to G$, define

$$f \in G(U) \iff \forall a \in U \exists \text{ neighborhood } V \ni a \text{: } f|V = \text{constant}.$$

For $V \subseteq U$, set $\rho^U_V f := f|V$. Then G defines a sheaf called the sheaf of locally constant function on X with values in G.

(b) The set of all meromorphic functions on \mathbb{C} defines a (pre)sheaf.

(c) Let $U \subseteq \mathbb{C}$ be open and

$$\mathcal{E}(U) := \{f : U \to \mathbb{C} : f \text{ is infinitely often real differentiable}\}.$$

For $V \subseteq U$, set $\rho^U_V f := f|V$. Then, \mathcal{E} is a (pre)sheaf on \mathbb{C}.

(d) Let U be an open subset of \mathbb{C}. The set

$$\mathcal{O}^*(U) := \left\{ f \in \mathcal{O}(U) : \frac{1}{f} \in \mathcal{O}(U) \right\}$$

is an abelian group. For $V \subseteq U$, let $\rho^U_V f := f|V$. Then, \mathcal{O}^* is a sheaf on \mathbb{C} called the sheaf of germs of nowhere vanishing holomorphic functions.

(e) Let G be an abelian group and $x \in X$ a fixed point in a topological space X. Let U be an open subset of X. Define

$$G_x(U) := \begin{cases} G, & \text{if } x \in U, \\ \{0\}, & \text{if } x \notin U, \end{cases}$$

and restriction mappings

$$\rho^U_V := \begin{cases} \{0\} \ni 0 \mapsto 0 \in \{0\}, & x \notin U \land x \notin V \\ G \ni g \mapsto 0 \in \{0\}, & x \in U \land x \notin V \\ \text{id}_G, & x \in U \land x \in V, \end{cases}$$

where the $V \subseteq U$ are open subsets of X. Then, G_x is a sheaf on X called the skyscraper sheaf on X.

2. Show that Example 12.2.(2) does not define a sheaf if G contains at least two distinct elements and X two disjoint open subsets.