Problem Set 5

1. Determine whether the following infinite products converge.

(a) \(\prod_{n=2}^{\infty} \left(1 + (-1)^{n} \frac{1}{n} \right) \):

(b) \(\prod_{n=2}^{\infty} \left(1 + (-1)^{n} \frac{1}{\sqrt{n}} \right) \).

2. Prove the following lemmas:

(a) **Lemma 7.6:** Let \(U \subseteq \mathbb{C} \), let \(\{ f_{\nu} : U \rightarrow \mathbb{C} : \nu \in \mathbb{N} \} \) be a sequence of functions, and \(f : U \rightarrow \mathbb{C} \) a function on \(U \). Assume that for \(z \in U \) the sequence \(\{ f_{\nu}(z) \} \) converges uniformly to \(f(z) \). Further assume that there exists a constant \(K \in \mathbb{R} \) such that \(\text{Re} f(z) \leq K, \forall z \in U \). Then \(\{ \exp f_{\nu}(z) \} \) converges uniformly to \(\exp f(z) \).

(b) **Lemma 7.7:** Suppose \(U \subseteq \mathbb{C} \) is compact and \(\{ f_{\nu} : U \rightarrow \mathbb{C} : \nu \in \mathbb{N} \} \) a sequence of continuous functions with the property that \(\sum_{\nu \in \mathbb{N}} f_{\nu}(z) \) converges absolutely and uniformly for \(z \in U \). Then the infinite product

\[f(z) := \prod_{\nu \in \mathbb{N}} (1 + f_{\nu}(z)) \]

converges absolutely and uniformly for all \(z \in U \).

3. Prove the following:

Theorem 7.8: Let \(G \subseteq \mathbb{C} \) be a region and \(\{ f_{\nu} : \nu \in \mathbb{N} \} \subset \mathcal{O}(G) \) a sequence of non-vanishing holomorphic Functions. If the infinite series \(\sum_{\nu \in \mathbb{N}} f_{\nu} \) converges absolutely and uniformly on all compact subsets of \(G \) then \(\prod_{\nu \in \mathbb{N}} (1 + f_{\nu}) \) converges in \(\mathcal{O}(G) \) to an \(f \in \mathcal{O}(G) \).

[Note: Convergence in \(\mathcal{O}(G) \) is convergence relative to the metric of \(C(G) \).]

4. **(Blaschke Products)** Let \(K := \{ z \in \mathbb{C} : |z| < 1 \} \) be the unit disk and \(\{ \alpha_{\nu} : \nu \in \mathbb{N} \} \) a sequence of non-zero complex numbers in \(K \). Assume that

\[\sum_{\nu \in \mathbb{N}} (1 - |\alpha_{\nu}|). \]

converges. Show that the infinite product

\[f(z) := \prod_{\nu \in \mathbb{N}} \frac{\alpha_{\nu} - z}{1 - \alpha_{\nu} \bar{z}} \frac{|\alpha_{\nu}|}{\alpha_{\nu}} \]

converges uniformly for all \(|z| \leq r < 1 \) and defines a holomorphic function \(f : K \rightarrow K \) which has \(\{ \alpha_{\nu} : \nu \in \mathbb{N} \} \) as its only set of zeros.