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Intro and known results

The Cucker-Smale model - Introdruction

... a dynamical system used to describe the nature of a group of moving
agents, i.e. birds, but also the formation/evolution of languages etc.

X,'(t) = V,'(t;e
vi(t) = 5 ;3(\\&'(1“) = xi(8)][) - (vi(t) — vi(t)),

where x1, ..., Xy, V1, ..., vy € RY with given initial values at 0 and a is a
non-increasing positive Lipschitz function. Example of Cucker and Smale:
= K K 0,8>0
a(X)—ma ,0>0,82

References:

F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Trans.
Automat. Control, 52(5):852-862, 2007.

F. Cucker and S. Smale. On the mathematics of emergence. Jpn. J.
Math., 2(1):197-227, 2007.
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Intro and known results

The Cucker-Smale model - First observations

First observations:
@ Bigger difference between velocities = bigger change of velocity
@ Bigger distance of particles = smaller influence on the change of
velocity

2

© Mean velocity v(t) = & > vi(t) is a constant of the system
j=1

© Rotation of the start parameters x1(0), ..., xn(0), v1(0), ..., vn(0)
results in rotation of the system
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Intro and known results

The Cucker-Smale model - First observations

First observations:

Bigger difference between velocities = bigger change of velocity

Bigger distance of particles = smaller influence on the change of
velocity

2

© Mean velocity v(t) = & > vi(t) is a constant of the system

Jj=1
Rotation of the start parameters x1(0), ..., xn(0), vi(0), ..., vn(0)
results in rotation of the system

We can rewrite the system as
X=v . N
{ . with L, = (aif)ile and a;; = Z —ajj,
v=—Lv, —
JF
symmetric L, a; > 0, a;j <0 and hence L, positive semi-definite.
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Intro and known results

The Cucker-Smale model - Main parameters

To measure the distances of the particles as well as their velocities we
introduce:

X(t) = NZZHx,(t — (0P = Nznx,(t>—x(r)u2 2 -,

ij=1
V)= o > le) - (@I = va,(r)—v )2 =2 -
ij=1
vit(t) = vi(t) — v(¢).

Benjamin Scharf (TUM) Control of high-dim. Cucker-Smale systems July 15, 2013 5/28



Intro and known results

The Cucker-Smale model - Main parameters

To measure the distances of the particles as well as their velocities we
introduce:

X(t) = Nzlex,(t — (0P = Nznx,m—x(rw 2 -,

I,jl

vie):= 2N22||v, — (P = Env,(r)—v )2 =2 -

ij=1
Loey . o
vir(t) == vi(t) — v(t).
The main question is: Does the systems tend to consensus?

? 1 N :_ | 1 -J_ f— i = ?
tILrQO vi(t) = v or equivalently fIl>rr;o vi-(t) = 0 resp. tILngo V(t) =07

This would imply: The system moves as a swarm, i.e.

x(t) = x(to) + (t — to)v
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Intro and known results
[ 1]

The Cucker-Smale model - Consensus

Motion in the plane
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Intro and known results
(o] J

The Cucker-Smale model - Explosion

Motion in the plane
20

10+
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Intro and known results

The Cucker-Smale model - Consensus

First observe

t) = N Z “ Vi )||2 Z < VI I >: — < v, LxV >Rd><n

= sz (b (£) = xi () - () = vi(E)I12.

ij=1
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Intro and known results

The Cucker-Smale model - Consensus

First observe

t) = N Z “ Vi )||2 Z < VI I >: — < v, LxV >Rd><n

= sz (b (£) = xi () - () = vi(E)I12.

ij=1

Lemma (Lyapunov functional behaviour)

%V(t) <a <\/2NX(t)> V/ V(t) as long as V(t) > 0

Hence: If X(t) is bounded, the system tends to consensus.
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Intro and known results
[o] le}

The Cucker-Smale model - Consensus (ii)
Theorem (Ha, Ha, Kim 2010)

If /\Zma (mr) dr > \/V(0), then lim V(t) =0.
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known results

nsensus
@0

The Cucker-Smale model - Consensus (ii)
Theorem (Ha, Ha, Kim 2010)

I /:%a (\/Wr> dr > \/V(0), then lim V(t) =0.

Remarks:

@ a not integrable = the system tends to consensus independent of the
start parameters

@ Otherwise: If the distance of the actors is not too large resp. the
starting velocities are not too different, the system tends to consensus

Example

Classical C.-S. distance a(x) = m

e [ <1/2: always consensus (strong enough forces)
@ (> 1/2: depends on the initial values
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nsensus

known results

00

The Cucker-Smale model - Consensus (iii)

Example
Two agents, 8 = 1, consider there distance x = x; — x» and difference of

velocity v=v; — vy :
v

14 x2
with initial distance x(0) = xo and diff. of velocities v(0) = vo > 0. Hence
0 < v(t) < v since |v(t)]| is decreasing and v(t') =0 = v(t) =0,t > t'.

X=v, v=

This yields  v(t) — vp = — arctan x(t) + arctan xg.

v

10 / 28
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nd known results Steering onsensus i ion reduction

000®

The Cucker-Smale model - Consensus (iii)

Example
Two agents, 8 = 1, consider there distance x = x; — x» and difference of

velocity v=v; — vy :
v

14 x2
with initial distance x(0) = xo and diff. of velocities v(0) = vo > 0. Hence
0 < v(t) < v since |v(t)]| is decreasing and v(t') =0 = v(t) =0,t > t'.

X=v, v=

This yields  v(t) — vp = — arctan x(t) + arctan xg.

@ arctanxp + vo < 7/2 = x(t) bounded:

a) arctan x(t) < arctan x(t) + v(t) < 7/2

b) arctan x(t) > (vop — v(t)) + arctan xg > arctan xp
@ arctanxgp + vo = v(t) + arctan x(t) = 7/2 = v(t) J 0 or x(t) bound.
@ arctanxp + vo = /2 + ¢ = v(t) +arctanx(t) = 7/2 + ¢ = v(t) > £ |
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Steering to consensus

Table of contents

@ Steering Cucker-Smale model to consensus using sparse control
@ Control of dynamical systems
@ Construction of sparse controls for dynamical systems
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Steering to consensus

The consensus manifold
Idea: If we are not in the consensus manifold, infer (sparse) control

vit)

B

0.05

Consensus area

X(t)

Ref.: M. Caponigro, M. Fornasier, B. Piccoli and E. Trelat. Sparse

stabilization and control of the Cucker-Smale model. submitted, 2012.
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own results

Steering to consensus

Sparsely Controlled Cucker-Smale system

Goal: Stear the system to the consensus area using control and then stop
the control. Minimize the necessary " control steps” - minimize the time to

consensus and the number of agents to act on:

.
Il
-

with E{V - Eg—norm constraint (compare to compressed sensing)

N
Y llui(®)l2 < ©.
i=1

Observe: V is not constant anymore.
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known results Steering to consensus

Maximizing the decay of V/(t)

Maximizing the decay of V/(t) with respect to the /) — ¢-norm constraint
leads to the so-called shepherd dog (Schaferhund) strategy:

d d d
V()= —<v-vV,v-v>=2< —vlt vyt >
dt (1) dt ’ dt’
:2<V,vL>:—<va,v>+<u,vL>
vI.J- e . L n
= _MH‘GT” if i is first i : [|vit|| = maxj=1,.n HVJ I
0 otherwise

is (one/the) maximizer under Z,N:l lui(t)|l2 < ©.
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n results consensus

Maximizing the decay of V/(t)

Maximizing the decay of V/(t) with respect to the /) — ¢-norm constraint
leads to the so-called shepherd dog (Schaferhund) strategy:

d d d , |

EV(t)=a<v—7,v—7>:2<av LV >
:2<V,VJ‘>:—<LXV,V>+<U,VJ'>
vt e g .
L _M”\/:T” if i is first i : ||V = maxj=1,.. N HVJJ‘”
0 otherwise

is (one/the) maximizer under Z,N:l lui(t)|l2 < ©.

The control only acts on the most stubborn guy!
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nown results Steering to consensus

00000000

How to construct controls - Paradox of switching controls

The controls are defined pointwisely and influence the future. The
following example shows the problem:

0.2 0.2

0.2

Assume uy is active for [0, t] = vq is nearer to V at t/2 than v X
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own results

Steering to consensus

How to construct controls - Sample and Hold

Sample and Hold idea: First construct solutions with controls constant on
intervals [k7, (k + 1)7] - time-sparse controls.

Recursive construction of the sampling solution:

As long as we are not in the consensus manifold at t = k7 solve

z(t) = f(z(t), u(z(kT))), te€ [kr,(k+1)7]

with initial value z(k7) and u(kT) chosen as before.
Observe: The optimality criterion (decay of V/(t)) doesn’t hold anymore.

Benjamin Scharf (TUM)

Control of high-dim. Cucker-Smale systems

July 15, 2013 16 / 28



n results ng to consensus

@000

How to construct controls - Sample and Hold

Sample and Hold idea: First construct solutions with controls constant on
intervals [k7, (k 4+ 1)7] - time-sparse controls.

Recursive construction of the sampling solution:

As long as we are not in the consensus manifold at t = k7 solve

z(t) = f(z(t), u(z(kT))), te€ [kr,(k+1)7]

with initial value z(k7) and u(kT) chosen as before.
Observe: The optimality criterion (decay of V/(t)) doesn't hold anymore.

Theorem (Caponigro, Fornasier, Piccoli, Trelat)

For every © (constraint size) there exists 19 > 0 such that for all sampling
times T € [0, 79] the sampling solution of the controlled Cucker-Smale
system reaches the consensus region in finite time.
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1 known results Steering to consensus
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How to construct controls - Filippov solution

Convergence: Take the solutions x; with respect to the sampling time 7
and let 7 — 0. Prove that z; converges to a z in a suitable way.

z- =29 +/0 f(z-(s)) + ur(z-(s)) ds.
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own results Steering to consensus

00000800

How to construct controls - Filippov solution

Convergence: Take the solutions x; with respect to the sampling time 7
and let 7 — 0. Prove that z; converges to a z in a suitable way.

z- =29 +/0 f(z-(s)) + ur(z-(s)) ds.

@ z: are bounded on finite intervals (Gronwall estimate)
@ z; are equicontinuous (equi-Lipschitz)

© 2z, converges by Arzela-Ascoli in C to z € Lip.

o

t
/ ur (2, (s)) ds — y(2)
0
@ Since u, are bounded, y is absolutely continuous, can be written as
t
y(t) :/ u(s) ds.
0

@ Density argument: u,(z(7)) — u weakly in Ly
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1 known results

Steering to consensus

How to construct controls - Filippov solution

A deeper argument shows: The limit control u is of the form

Vi H AT . L
QI if [[vi-|| = maxj=1,n [|vi |

0 , otherwise

until reaching consensus region and minimizes the decay of V/(t): It is
possibly not sparse (Example!).
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vn results

Steering to consensus

00000080

How to construct controls - Filippov solution

A deeper argument shows: The limit control u is of the form

Vi H AT . L
QI if [[vi-|| = maxj=1,n [|vi |

0 , otherwise

until reaching consensus region and minimizes the decay of V/(t): It is
possibly not sparse (Example!).
Remarks and open problems:

@ The time to consensus can be estimated from above depending on
X(0),V(0) and the constraint ©

@ Greedy minimization may not be optimal
@ What is the minimal time to consensus?

@ How much control interactions are necessary?
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Steering to consensus

0000

How to construct controls - picture

Motion in the plane Modulus of the speeds in function of time

X() K(®)
10 4

©

(2]

EN

N

0 0
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known results S g Dimension reduction

Table of contents

© Dimension reduction of the Cucker-Smale model
@ Introduction high dimension
@ Dimension reduction and Johnson-Lindenstrauss matrices (JLM)
@ Can we use low-dimension information to find the right control?
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known results S g Dimension reduction

Introduction

The case N — oo (large number of agents) is widely considered in the
literature:

@ locations, velocities = density distributions
e dynamical system, ODE = PDE
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Dimension reduction

Introduction

The case N — oo (large number of agents) is widely considered in the
literature:
@ locations, velocities = density distributions

e dynamical system, ODE = PDE

The case d — oo (high dimension/many coordinates/variables) is of our
interest.

Example: Social movement (panic), Financial movement
x not locations, more variables/state of the system
(Health, pulse, strength; situation on the market, IFO-Index etc.)

v describes the movement towards consensus

= Goal: Panic prevention, Black Swan prevention
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own results

Dimension reduction
0@000000

Johnson-Lindenstrauss matrices

The main tool is the dimension reduction by Johnson-Lindenstrauss:

Lemma (Johnson-Lindenstrauss matrices (JLM))
Let x1,...,xn be points in RY. Given € > 0, there exists a constant

ko = O(s 2 log N),

such that for all integers k > ko there exists a k x d matrix M for which

(1 —&)|Ix > < IMxi||? < (L +¢€)||xi||?, foralli=1,...,N.

Benjamin Scharf (TUM)
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n results nsensus

Johnson-Lindenstrauss matrices

The main tool is the dimension reduction by Johnson-Lindenstrauss:

Lemma (Johnson-Lindenstrauss matrices (JLM))

Let x1,...,xn be points in RY. Given € > 0, there exists a constant
ko = O(s 2 log N),

such that for all integers k > ko there exists a k x d matrix M for which

(1 —&)|Ix > < IMxi||? < (L +¢€)||xi||?, foralli=1,...,N.

Remarks:

@ M can be understood as a low-dimensional replacement for a
projection onto span{xi,...,xn}

@ ko does not depend on the dimension, only logarithmically on the
number of points N, usely N ~ d“ = logarithmically on d

@ the construction of JLM uses random matrices, no deterministic
construction known
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Dimension reduction
00800000

How to reduce the dimension of the Cucker-Smale model
M. Fornasier, J. Haskovec and J. Vlybiral. Particle systems and kinetic
equations modeling interacting agents in high dimension, 2011.

= Reduction of the Cucker-Smale-like models without control.
N

Mv;(t) = %Z a(llxi(t) = X)) - (My;(¢) — Mvi(t))

= I

N
Z a([| Mx;(t) = Mx;(t)][) - (Mv;(t) — Mui(t)) .
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own results onsensus

Dimension reduction

How to reduce the dimension of the Cucker-Smale model
M. Fornasier, J. Haskovec and J. Vlybiral. Particle systems and kinetic
equations modeling interacting agents in high dimension, 2011.

= Reduction of the Cucker-Smale-like models without control.
N

(1) = %Z (1) ~ (D)) - (Mug(t) — Mui(1))

= \

N
Z [[Mx;(t) = Mxi(2)[]) - (Mv;(t) — Mvi(t)).

Idea: Consider a low-dimensional Cucker-Smale system in R* (low

dimension JLM) with (yo, wp) = (Mxop, Mvp) as initial values. They show:

JLM-projection of the high-dimensional system stays close
to the low-dimensional system

or: first project, then dynamics ~ first dynamics, then project
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Dimension reduction

First tool: A continuous Johnson-Lindenstrauss lemma
Lemma (Bongini, Fornasier, Scharf (BFS))

Let ¢ : [0,1] — R9 be a Lipschitz function (bound L,), 0 < ¢ < &' < 1,
5 > 0 and M be a Johnson-Lindenstrauss matrix in Rk*9 for

6d/k
R CED

points with high probability. Then for every t € [0, 1] one of the following
holds (with the same high probability):

(1 =Nl < IMe(t)ll < (1+ )l ()]

lp()ll < 6 and [[Mp(2)]| < 0.
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Intro and

Dimension reduction

First tool: A continuous Johnson-Lindenstrauss lemma
Lemma (Bongini, Fornasier, Scharf (BFS))

Let ¢ : [0,1] — R9 be a Lipschitz function (bound L,), 0 < ¢ < &' < 1,
5 > 0 and M be a Johnson-Lindenstrauss matrix in Rk*9 for

6d/k
R CED

points with high probability. Then for every t € [0, 1] one of the following
holds (with the same high probability):

1 =Nl < IMp(t)ll < (1+€)lle(2)]
le(t)] < 8 and [[My(t)|| < o.

Remarks: The original lemma of Fornasier, Haskovec, Vybiral assumed

that ¢ has bounded curvature which is not given in the Cucker-Smale case.
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Dimension reduction

0000000

What is the plan?

() = & 32 allbg(t) — xi(Ol) - (5(8) — w(t) + ().

-
Il
-

© Project the high-dimensional initial values with JLM M to
low-dimension

@ Choose the index of sparse control (u; # 0) from the low-dimensional
system and apply it to the high-dimensional system

© Show: If the systems stay close to each other, then

» either both systems are in consensus or
» the control is reasonable for both systems (decay of V/(t) is fast
enough)
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Dimension reduction

Norm estimates for high-dimensional control

Lemma (High-dimensional control is legit, BFS)

Le M be a Johnson-Lindenstrauss matrix with e = 1/2 and ¢ for the

points a;. Assume ||Ma; — bj|| < §. Let i be the smallest index such that
[16i]l = [[b;]| and

1O 1<
= — E |aj||? and B := = E | ;|-
N 4 N 4
Jj=1 Jj=1
If VB > 20, then (c indep. of d, N)

b;
|ail| > H H, llaj|| > ¢- VA and B < 4NA.

If VB < 26, then (C indep. of d,N)
VA< Cé.
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n results nsensus sion reduction

The main result
Theorem (BFS)

Let M € R¥*9 be a continuous Johnson-Lindenstrauss matrix for the
distances of x(t), v(t) with € and § sufficiently (very, very) small. Choose
the sparse control index according to the low k-dimensional Cucker-Smale
system with initial values (Mx(0), Mv(0)).

Then for every © (constraint) and T < 7o the sampling solution of the so
controlled high-dimensional Cucker-Smale system reaches the consensus
region in finite time.

Remarks:

@ ¢ and § (and everything else) do not depend on d, but heavily on N
@ If © >> 0 and is constant with N, then € can be choosen such that:

1
CNeN/c

E ~v
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known results Ste se Dimension reduction
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There is another problem...

In the theorem we suppose M is a JLM for the distances of x(t), v(t), but:
The initial values of the low-dimensional system and hence the controls
depend on M

= the high-dimensional system depends on M: Vicious circle

Solutions so far:

o take M as JLM for all possible trajectories, in principal N7/7
possibilities where T is the time until consensus = we have to
estimate the exponent T /7, problematic

@ use different matrices of the same dimension for every choice of the
control (at k7) = a lot of matrix-vector multiplications in dimension
d, since T /7 depends on N at least linearly right now
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ooe

There is another problem...

In the theorem we suppose M is a JLM for the distances of x(t), v(t), but:
The initial values of the low-dimensional system and hence the controls
depend on M

= the high-dimensional system depends on M: Vicious circle

Solutions so far:

o take M as JLM for all possible trajectories, in principal N7/7
possibilities where T is the time until consensus = we have to
estimate the exponent T /7, problematic

@ use different matrices of the same dimension for every choice of the
control (at k7) = a lot of matrix-vector multiplications in dimension
d, since T /7 depends on N at least linearly right now

Thank you for your attention!

Benjamin Scharf (TUM) Control of high-dim. Cucker-Smale systems July 15, 2013 28 /28



	Introduction and classical results of the Cucker-Smale model
	The general Cucker-Smale model
	Pictures
	Results on consensus

	Steering Cucker-Smale model to consensus using sparse control
	Control of dynamical systems
	Construction of sparse controls for dynamical systems

	Dimension reduction of the Cucker-Smale model
	Introduction high dimension
	Dimension reduction and Johnson-Lindenstrauss matrices (JLM)
	Can we use low-dimension information to find the right control?


