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The Cucker-Smale model - Introdruction
. . . a dynamical system used to describe the nature of a group of moving
agents, i. e. birds, but also the formation/evolution of languages etc.

ẋi (t) = vi (t)

v̇i (t) = 1
N

N∑
j=1

a(‖xj(t)− xi (t)‖) · (vj(t)− vi (t)) ,

where x1, . . . , xN , v1, . . . , vN ∈ Rd with given initial values at 0 and a is a
non-increasing positive Lipschitz function. Example of Cucker and Smale:

a(x) =
K

(σ2 + x2)β
, K , σ > 0, β ≥ 0

References:
F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Trans.
Automat. Control, 52(5):852–862, 2007.
F. Cucker and S. Smale. On the mathematics of emergence. Jpn. J.
Math., 2(1):197–227, 2007.

Benjamin Scharf (TUM) Control of high-dim. Cucker-Smale systems July 15, 2013 3 / 28



Intro and known results Steering to consensus Dimension reduction

The Cucker-Smale model - First observations

First observations:

1 Bigger difference between velocities ⇒ bigger change of velocity

2 Bigger distance of particles ⇒ smaller influence on the change of
velocity

3 Mean velocity v(t) = 1
N

N∑
j=1

vi (t) is a constant of the system

4 Rotation of the start parameters x1(0), . . . , xN(0), v1(0), . . . , vN(0)
results in rotation of the system

5 We can rewrite the system as{
ẋ = v

v̇ = −Lxv ,
with Lx = (aij)

N
i ,j=1 and aii =

∑
j 6=i

−aij ,

symmetric Lx , aii ≥ 0, aij ≤ 0 and hence Lx positive semi-definite.
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The Cucker-Smale model - Main parameters
To measure the distances of the particles as well as their velocities we
introduce:

X (t) :=
1

2N2

N∑
i ,j=1

‖xi (t)− xj(t)‖2 =
1

N

N∑
i=1

‖xi (t)− x(t)‖2 = x2 − x2,

V (t) :=
1

2N2

N∑
i ,j=1

‖vi (t)− vj(t)‖2 =
1

N

N∑
i=1

‖vi (t)− v(t)‖2 = v2 − v2

v⊥i (t) := vi (t)− v(t).

The main question is: Does the systems tend to consensus?

? lim
t→∞

vi (t) = v or equivalently lim
t→∞

v⊥i (t) = 0 resp. lim
t→∞

V (t) = 0?

This would imply: The system moves as a swarm, i. e.

x(t) ≈ x(t0) + (t − t0)v
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The Cucker-Smale model - Consensus
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The Cucker-Smale model - Explosion
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The Cucker-Smale model - Consensus

First observe

d

dt
V (t) =

1

N

N∑
i=1

d

dt
‖vi (t)‖2 =

2

N

N∑
i=1

< vi (t), v̇i (t) >= − < v , Lxv >Rd×n

= − 1

N2

N∑
i ,j=1

a(‖xj(t)− xi (t)‖) · ‖vj(t)− vi (t)‖2.

Lemma (Lyapunov functional behaviour)
d

dt
V (t) ≤ a

(√
2NX (t)

)√
V (t) as long as V(t) > 0

Hence: If X (t) is bounded, the system tends to consensus.
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The Cucker-Smale model - Consensus (ii)

Theorem (Ha, Ha, Kim 2010)

If

∫ ∞
√

X (0)
a
(√

2Nr
)

dr ≥
√

V (0), then lim
t→∞

V (t) = 0.

Remarks:

1 a not integrable ⇒ the system tends to consensus independent of the
start parameters

2 Otherwise: If the distance of the actors is not too large resp. the
starting velocities are not too different, the system tends to consensus

Example

Classical C.-S. distance a(x) = 1
(1+x2)β

β ≤ 1/2: always consensus (strong enough forces)

β > 1/2: depends on the initial values
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The Cucker-Smale model - Consensus (iii)

Example

Two agents, β = 1, consider there distance x = x1 − x2 and difference of
velocity v = v1 − v2 :

ẋ = v , v̇ = − v

1 + x2

with initial distance x(0) = x0 and diff. of velocities v(0) = v0 > 0. Hence
0 < v(t) ≤ v0 since |v(t)| is decreasing and v(t ′) = 0⇒ v(t) = 0, t ≥ t ′.

This yields v(t)− v0 = − arctan x(t) + arctan x0.

arctan x0 + v0 < π/2⇒ x(t) bounded:
a) arctan x(t) ≤ arctan x(t) + v(t) < π/2
b) arctan x(t) ≥ (v0 − v(t)) + arctan x0 ≥ arctan x0

arctan x0 + v0 = v(t) + arctan x(t) = π/2⇒ v(t) ↓ 0 or x(t) bound.

arctan x0 + v0 = π/2 + ε⇒ v(t) + arctan x(t) = π/2 + ε⇒ v(t) ≥ ε
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The consensus manifold
Idea: If we are not in the consensus manifold, infer (sparse) control

Ref.: M. Caponigro, M. Fornasier, B. Piccoli and E. Trelat. Sparse
stabilization and control of the Cucker-Smale model. submitted, 2012.
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Sparsely Controlled Cucker-Smale system

Goal: Stear the system to the consensus area using control and then stop
the control. Minimize the necessary ”control steps” - minimize the time to
consensus and the number of agents to act on:

ẋi (t) = vi (t)

v̇i (t) = 1
N

N∑
j=1

a(‖xj(t)− xi (t)‖) · (vj(t)− vi (t)) + ui (t).

with `N1 − `d2 -norm constraint (compare to compressed sensing)

N∑
i=1

‖ui (t)‖2 ≤ Θ.

Observe: v is not constant anymore.
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Maximizing the decay of V (t)

Maximizing the decay of V (t) with respect to the `N1 − `d2 -norm constraint
leads to the so-called shepherd dog (Schäferhund) strategy:

d

dt
V (t) =

d

dt
< v − v , v − v >= 2 <

d

dt
v⊥, v⊥ >

= 2 < v̇ , v⊥ >= − < Lxv , v > + < u, v⊥ >

⇒ ui =

−M
v⊥i
‖v⊥i ‖

if i is first i : ‖v⊥i ‖ = maxj=1,...,N ‖v⊥j ‖

0 otherwise

is (one/the) maximizer under
∑N

i=1 ‖ui (t)‖2 ≤ Θ.

The control only acts on the most stubborn guy!
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How to construct controls - Paradox of switching controls

The controls are defined pointwisely and influence the future. The
following example shows the problem:

Assume u1 is active for [0, t]⇒ v1 is nearer to v at t/2 than v2××××
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How to construct controls - Sample and Hold

Sample and Hold idea: First construct solutions with controls constant on
intervals [kτ, (k + 1)τ ] - time-sparse controls.
Recursive construction of the sampling solution:
As long as we are not in the consensus manifold at t = kτ solve

ż(t) = f (z(t), u(z(kτ))), t ∈ [kτ, (k + 1)τ ]

with initial value z(kτ) and u(kτ) chosen as before.
Observe: The optimality criterion (decay of V (t)) doesn’t hold anymore.

Theorem (Caponigro, Fornasier, Piccoli, Trelat)

For every Θ (constraint size) there exists τ0 > 0 such that for all sampling
times τ ∈ [0, τ0] the sampling solution of the controlled Cucker-Smale
system reaches the consensus region in finite time.
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How to construct controls - Filippov solution
Convergence: Take the solutions xτ with respect to the sampling time τ
and let τ → 0. Prove that zτ converges to a z in a suitable way.

zτ = z0 +

∫ t

0
f (zτ (s)) + uτ (zτ (s)) ds.

1 zτ are bounded on finite intervals (Gronwall estimate)
2 zτ are equicontinuous (equi-Lipschitz)
3 zτ converges by Arzela-Ascoli in C to z ∈ Lip.
4 ∫ t

0
uτ (zτ (s)) ds → y(t)

5 Since uτ are bounded, y is absolutely continuous, can be written as

y(t) =

∫ t

0
u(s) ds.

6 Density argument: uτ (z(τ))→ u weakly in L1
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How to construct controls - Filippov solution

A deeper argument shows: The limit control u is of the form

ui =

−αi
v⊥i
‖v⊥i ‖

, if ‖v⊥i ‖ = maxj=1,...,N ‖v⊥j ‖

0 , otherwise

until reaching consensus region and minimizes the decay of V (t): It is
possibly not sparse (Example!).

Remarks and open problems:

The time to consensus can be estimated from above depending on
X (0),V (0) and the constraint Θ

Greedy minimization may not be optimal

What is the minimal time to consensus?

How much control interactions are necessary?
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How to construct controls - picture

−5 0 5 10
−8

−6

−4

−2

0

2

4
Motion in the plane

0 2 4 6 8 10
0

5

10

15

20
Modulus of the speeds in function of time

0 2 4 6 8 10
0

2

4

6

8

10
X(t)

0 2 4 6 8 10
0

1

2

3

4
K(t)

Benjamin Scharf (TUM) Control of high-dim. Cucker-Smale systems July 15, 2013 19 / 28



Intro and known results Steering to consensus Dimension reduction

Table of contents

1 Introduction and classical results of the Cucker-Smale model
The general Cucker-Smale model
Pictures
Results on consensus

2 Steering Cucker-Smale model to consensus using sparse control
Control of dynamical systems
Construction of sparse controls for dynamical systems

3 Dimension reduction of the Cucker-Smale model
Introduction high dimension
Dimension reduction and Johnson-Lindenstrauss matrices (JLM)
Can we use low-dimension information to find the right control?

Benjamin Scharf (TUM) Control of high-dim. Cucker-Smale systems July 15, 2013 20 / 28



Intro and known results Steering to consensus Dimension reduction

Introduction

The case N →∞ (large number of agents) is widely considered in the
literature:

locations, velocities ⇒ density distributions

dynamical system, ODE ⇒ PDE

The case d →∞ (high dimension/many coordinates/variables) is of our
interest.
Example: Social movement (panic), Financial movement
x not locations, more variables/state of the system
(Health, pulse, strength; situation on the market, IFO-Index etc.)

v describes the movement towards consensus

⇒ Goal: Panic prevention, Black Swan prevention
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Johnson-Lindenstrauss matrices
The main tool is the dimension reduction by Johnson-Lindenstrauss:

Lemma (Johnson-Lindenstrauss matrices (JLM))

Let x1, . . . , xN be points in Rd . Given ε > 0, there exists a constant

k0 = O(ε−2 log N),

such that for all integers k ≥ k0 there exists a k × d matrix M for which

(1− ε)‖xi‖2 ≤ ‖Mxi‖2 ≤ (1 + ε)‖xi‖2, for all i = 1, . . . ,N.

Remarks:

M can be understood as a low-dimensional replacement for a
projection onto span{x1, . . . , xN}
k0 does not depend on the dimension, only logarithmically on the
number of points N, usely N ∼ dα ⇒ logarithmically on d
the construction of JLM uses random matrices, no deterministic
construction known
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How to reduce the dimension of the Cucker-Smale model
M. Fornasier, J. Haskovec and J. Vybiral. Particle systems and kinetic
equations modeling interacting agents in high dimension, 2011.
⇒ Reduction of the Cucker-Smale-like models without control.

Ṁvi (t) =
1

N

N∑
j=1

a(‖xj(t)− xi (t)‖) · (Mvj(t)−Mvi (t))

∼ 1

N

N∑
j=1

a(‖Mxj(t)−Mxi (t)‖) · (Mvj(t)−Mvi (t)) .

Idea: Consider a low-dimensional Cucker-Smale system in Rk (low
dimension JLM) with (y0,w0) = (Mx0,Mv0) as initial values. They show:

JLM-projection of the high-dimensional system stays close
to the low-dimensional system

or: first project, then dynamics ∼ first dynamics, then project
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⇒ Reduction of the Cucker-Smale-like models without control.

Ṁvi (t) =
1

N

N∑
j=1

a(‖xj(t)− xi (t)‖) · (Mvj(t)−Mvi (t))

∼ 1

N

N∑
j=1

a(‖Mxj(t)−Mxi (t)‖) · (Mvj(t)−Mvi (t)) .

Idea: Consider a low-dimensional Cucker-Smale system in Rk (low
dimension JLM) with (y0,w0) = (Mx0,Mv0) as initial values. They show:

JLM-projection of the high-dimensional system stays close
to the low-dimensional system

or: first project, then dynamics ∼ first dynamics, then project
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First tool: A continuous Johnson-Lindenstrauss lemma

Lemma (Bongini, Fornasier, Scharf (BFS))

Let ϕ : [0, 1]→ Rd be a Lipschitz function (bound Lϕ), 0 < ε < ε′ < 1,
δ > 0 and M be a Johnson-Lindenstrauss matrix in Rk×d for

N ≥ Lϕ
6d/k

δ(ε′ − ε)

points with high probability. Then for every t ∈ [0, 1] one of the following
holds (with the same high probability):

(1− ε′)‖ϕ(t)‖ ≤ ‖Mϕ(t)‖ ≤ (1 + ε′)‖ϕ(t)‖
or

‖ϕ(t)‖ ≤ δ and ‖Mϕ(t)‖ ≤ δ.

Remarks: The original lemma of Fornasier, Haskovec, Vybiral assumed
that ϕ has bounded curvature which is not given in the Cucker-Smale case.
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What is the plan?


ẋi (t) = vi (t)

v̇i (t) = 1
N

N∑
j=1

a(‖xj(t)− xi (t)‖) · (vj(t)− vi (t)) + ui (t).

1 Project the high-dimensional initial values with JLM M to
low-dimension

2 Choose the index of sparse control (ui 6= 0) from the low-dimensional
system and apply it to the high-dimensional system

3 Show: If the systems stay close to each other, then
I either both systems are in consensus or
I the control is reasonable for both systems (decay of V (t) is fast

enough)
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Norm estimates for high-dimensional control

Lemma (High-dimensional control is legit, BFS)

Le M be a Johnson-Lindenstrauss matrix with ε = 1/2 and δ for the
points ai . Assume ‖Mai − bi‖ ≤ δ. Let i be the smallest index such that
‖bi‖ ≥ ‖bj‖ and

A :=
1

N

N∑
j=1

‖aj‖2 and B :=
1

N

N∑
j=1

‖bj‖2.

If
√

B ≥ 2δ, then (c indep. of d ,N)

‖ai‖ ≥
‖bi‖

4
, ‖ai‖ ≥ c ·

√
A and B ≤ 4NA.

If
√

B ≤ 2δ, then (C indep. of d ,N)

√
A ≤ Cδ.
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The main result

Theorem (BFS)

Let M ∈ Rk×d be a continuous Johnson-Lindenstrauss matrix for the
distances of x(t), v(t) with ε and δ sufficiently (very, very) small. Choose
the sparse control index according to the low k-dimensional Cucker-Smale
system with initial values (Mx(0),Mv(0)).
Then for every Θ (constraint) and τ < τ0 the sampling solution of the so
controlled high-dimensional Cucker-Smale system reaches the consensus
region in finite time.

Remarks:

ε and δ (and everything else) do not depend on d , but heavily on N

If Θ >> 0 and is constant with N, then ε can be choosen such that:

ε ∼ c
1

NeN/c
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There is another problem...
In the theorem we suppose M is a JLM for the distances of x(t), v(t), but:
The initial values of the low-dimensional system and hence the controls
depend on M
⇒ the high-dimensional system depends on M: Vicious circle
Solutions so far:

take M as JLM for all possible trajectories, in principal NT/τ

possibilities where T is the time until consensus ⇒ we have to
estimate the exponent T/τ , problematic

use different matrices of the same dimension for every choice of the
control (at kτ) ⇒ a lot of matrix-vector multiplications in dimension
d , since T/τ depends on N at least linearly right now

Thank you for your attention!
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