How to steer high-dimensional Cucker-Smale systems to consensus using low-dimensional information only

Benjamin Scharf

Technische Universität München - Chair for Applied Numerical Analysis benjamin.scharf@ma.tum.de

July 15, 2013

Table of contents

- Introduction and classical results of the Cucker-Smale model
 - The general Cucker-Smale model
 - Pictures
 - Results on consensus
- Steering Cucker-Smale model to consensus using sparse control
 - Control of dynamical systems
 - Construction of sparse controls for dynamical systems
- Oimension reduction of the Cucker-Smale model
 - Introduction high dimension
 - Dimension reduction and Johnson-Lindenstrauss matrices (JLM)
 - Can we use low-dimension information to find the right control?

The Cucker-Smale model - Introdruction

... a dynamical system used to describe the nature of a group of moving agents, i. e. birds, but also the formation/evolution of languages etc.

$$\begin{cases} \dot{x}_i(t) = v_i(t) \\ \dot{v}_i(t) = \frac{1}{N} \sum_{j=1}^{N} a(\|x_j(t) - x_i(t)\|) \cdot (v_j(t) - v_i(t)), \end{cases}$$

where $x_1, \ldots, x_N, v_1, \ldots, v_N \in \mathbb{R}^d$ with given initial values at 0 and a is a non-increasing positive Lipschitz function. Example of Cucker and Smale:

$$a(x) = \frac{K}{(\sigma^2 + x^2)^{\beta}}, K, \sigma > 0, \beta \ge 0$$

References:

F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Trans.

Automat. Control, 52(5):852-862, 2007.

F. Cucker and S. Smale. On the mathematics of emergence. Jpn. J. Math., 2(1):197–227, 2007.

The Cucker-Smale model - First observations

First observations:

- Bigger difference between velocities ⇒ bigger change of velocity
- ② Bigger distance of particles ⇒ smaller influence on the change of velocity
- **3** Mean velocity $\overline{v}(t) = \frac{1}{N} \sum_{j=1}^{N} v_j(t)$ is a constant of the system
- **3** Rotation of the start parameters $x_1(0), \ldots, x_N(0), v_1(0), \ldots, v_N(0)$ results in rotation of the system

The Cucker-Smale model - First observations

First observations:

- Bigger difference between velocities ⇒ bigger change of velocity
- ② Bigger distance of particles ⇒ smaller influence on the change of velocity
- **3** Mean velocity $\overline{v}(t) = \frac{1}{N} \sum_{j=1}^{N} v_j(t)$ is a constant of the system
- **3** Rotation of the start parameters $x_1(0), \ldots, x_N(0), v_1(0), \ldots, v_N(0)$ results in rotation of the system
- We can rewrite the system as

$$\begin{cases} \dot{x} = v \\ \dot{v} = -L_x v, \end{cases} \quad \text{with } L_x = (a_{ij})_{i,j=1}^N \text{ and } a_{ii} = \sum_{j \neq i} -a_{ij},$$

symmetric L_x , $a_{ii} \ge 0$, $a_{ij} \le 0$ and hence L_x positive semi-definite.

The Cucker-Smale model - Main parameters

To measure the distances of the particles as well as their velocities we introduce:

$$X(t) := \frac{1}{2N^2} \sum_{i,j=1}^{N} \|x_i(t) - x_j(t)\|^2 = \frac{1}{N} \sum_{i=1}^{N} \|x_i(t) - \overline{x}(t)\|^2 = \overline{x^2} - \overline{x}^2,$$

$$V(t) := \frac{1}{2N^2} \sum_{i,j=1}^{N} \|v_i(t) - v_j(t)\|^2 = \frac{1}{N} \sum_{i=1}^{N} \|v_i(t) - \overline{v}(t)\|^2 = \overline{v^2} - \overline{v}^2$$

$$v_i^{\perp}(t) := v_i(t) - \overline{v}(t).$$

The Cucker-Smale model - Main parameters

To measure the distances of the particles as well as their velocities we introduce:

$$X(t) := \frac{1}{2N^2} \sum_{i,j=1}^N \|x_i(t) - x_j(t)\|^2 = \frac{1}{N} \sum_{i=1}^N \|x_i(t) - \overline{x}(t)\|^2 = \overline{x^2} - \overline{x}^2,$$

$$V(t) := \frac{1}{2N^2} \sum_{i,j=1}^{N} \|v_i(t) - v_j(t)\|^2 = \frac{1}{N} \sum_{i=1}^{N} \|v_i(t) - \overline{v}(t)\|^2 = \overline{v^2} - \overline{v}^2$$

$$v_i^{\perp}(t) := v_i(t) - \overline{v}(t).$$

The main question is: Does the systems tend to consensus?

$$\lim_{t \to \infty} v_i(t) = \overline{v}$$
 or equivalently $\lim_{t \to \infty} v_i^\perp(t) = 0$ resp. $\lim_{t \to \infty} V(t) = 0$?

This would imply: The system moves as a swarm, i. e.

$$x(t) \approx x(t_0) + (t - t_0)\overline{v}$$

The Cucker-Smale model - Consensus

The Cucker-Smale model - Explosion

The Cucker-Smale model - Consensus

First observe

$$\frac{d}{dt}V(t) = \frac{1}{N} \sum_{i=1}^{N} \frac{d}{dt} \|v_i(t)\|^2 = \frac{2}{N} \sum_{i=1}^{N} \langle v_i(t), \dot{v}_i(t) \rangle = -\langle v, L_x v \rangle_{\mathbb{R}^{d \times n}}$$

$$= -\frac{1}{N^2} \sum_{i=1}^{N} a(\|x_j(t) - x_i(t)\|) \cdot \|v_j(t) - v_i(t)\|^2.$$

The Cucker-Smale model - Consensus

First observe

$$\frac{d}{dt}V(t) = \frac{1}{N} \sum_{i=1}^{N} \frac{d}{dt} \|v_i(t)\|^2 = \frac{2}{N} \sum_{i=1}^{N} \langle v_i(t), \dot{v}_i(t) \rangle = -\langle v, L_x v \rangle_{\mathbb{R}^{d \times n}}$$

$$= -\frac{1}{N^2} \sum_{i=1}^{N} a(\|x_j(t) - x_i(t)\|) \cdot \|v_j(t) - v_i(t)\|^2.$$

Lemma (Lyapunov functional behaviour)

$$\frac{d}{dt}V(t) \leq a\left(\sqrt{2NX(t)}\right)\sqrt{V(t)}$$
 as long as $V(t) > 0$

Hence: If X(t) is bounded, the system tends to consensus.

The Cucker-Smale model - Consensus (ii)

Theorem (Ha, Ha, Kim 2010)

If
$$\int_{\sqrt{X(0)}}^{\infty} a\left(\sqrt{2N}r\right) dr \ge \sqrt{V(0)}$$
, then $\lim_{t\to\infty} V(t) = 0$.

The Cucker-Smale model - Consensus (ii)

Theorem (Ha, Ha, Kim 2010)

$$\text{If } \int_{\sqrt{X(0)}}^{\infty} a\left(\sqrt{2N}r\right) \ dr \geq \sqrt{V(0)}, \ \text{then } \lim_{t \to \infty} V(t) = 0.$$

Remarks:

- lacktriangle a not integrable \Rightarrow the system tends to consensus independent of the start parameters
- Otherwise: If the distance of the actors is not too large resp. the starting velocities are not too different, the system tends to consensus

Example

Classical C.-S. distance $a(x) = \frac{1}{(1+x^2)^{\beta}}$

- $\beta \le 1/2$: always consensus (strong enough forces)
- $\beta > 1/2$: depends on the initial values

The Cucker-Smale model - Consensus (iii)

Example

Two agents, $\beta=1$, consider there distance $x=x_1-x_2$ and difference of velocity $v=v_1-v_2$:

$$\dot{x} = v, \quad \dot{v} = -\frac{v}{1 + x^2}$$

with initial distance $x(0) = x_0$ and diff. of velocities $v(0) = v_0 > 0$. Hence $0 < v(t) \le v_0$ since |v(t)| is decreasing and $v(t') = 0 \Rightarrow v(t) = 0, t \ge t'$.

This yields
$$v(t) - v_0 = -\arctan x(t) + \arctan x_0$$
.

The Cucker-Smale model - Consensus (iii)

Example

Intro and known results

Two agents, $\beta=1$, consider there distance $x=x_1-x_2$ and difference of velocity $v=v_1-v_2$:

$$\dot{x} = v, \quad \dot{v} = -\frac{v}{1 + x^2}$$

with initial distance $x(0) = x_0$ and diff. of velocities $v(0) = v_0 > 0$. Hence $0 < v(t) \le v_0$ since |v(t)| is decreasing and $v(t') = 0 \Rightarrow v(t) = 0, t \ge t'$.

This yields
$$v(t) - v_0 = -\arctan x(t) + \arctan x_0$$
.

- $\operatorname{arctan} x_0 + v_0 < \pi/2 \Rightarrow x(t)$ bounded:
 - a) $\arctan x(t) \leq \arctan x(t) + v(t) < \pi/2$
 - b) $\operatorname{arctan} x(t) \ge (v_0 v(t)) + \operatorname{arctan} x_0 \ge \operatorname{arctan} x_0$
- $\arctan x_0 + v_0 = v(t) + \arctan x(t) = \pi/2 \Rightarrow v(t) \downarrow 0 \text{ or } x(t) \text{ bound.}$
- $\arctan x_0 + v_0 = \pi/2 + \varepsilon \Rightarrow v(t) + \arctan x(t) = \pi/2 + \varepsilon \Rightarrow v(t) \geq \varepsilon$

Table of contents

- Introduction and classical results of the Cucker-Smale model
 - The general Cucker-Smale model
 - Pictures
 - Results on consensus
- Steering Cucker-Smale model to consensus using sparse control
 - Control of dynamical systems
 - Construction of sparse controls for dynamical systems
- 3 Dimension reduction of the Cucker-Smale model
 - Introduction high dimension
 - Dimension reduction and Johnson-Lindenstrauss matrices (JLM)
 - Can we use low-dimension information to find the right control?

The consensus manifold

Idea: If we are not in the consensus manifold, infer (sparse) control

Ref.: M. Caponigro, M. Fornasier, B. Piccoli and E. Trelat. Sparse stabilization and control of the Cucker-Smale model. submitted, 2012.

Sparsely Controlled Cucker-Smale system

Goal: Stear the system to the consensus area using control and then stop the control. Minimize the necessary "control steps" - minimize the time to consensus and the number of agents to act on:

$$\begin{cases} \dot{x}_i(t) = v_i(t) \\ \dot{v}_i(t) = \frac{1}{N} \sum_{j=1}^{N} a(\|x_j(t) - x_i(t)\|) \cdot (v_j(t) - v_i(t)) + u_i(t). \end{cases}$$

with $\ell_1^{\it N}-\ell_2^{\it d}$ -norm constraint (compare to compressed sensing)

$$\sum_{i=1}^N \|u_i(t)\|_2 \leq \Theta.$$

Observe: \overline{v} is not constant anymore.

Maximizing the decay of V(t)

Maximizing the decay of V(t) with respect to the $\ell_1^N - \ell_2^d$ -norm constraint leads to the so-called shepherd dog (Schäferhund) strategy:

$$\frac{d}{dt}V(t) = \frac{d}{dt} < v - \overline{v}, v - \overline{v} >= 2 < \frac{d}{dt}v^{\perp}, v^{\perp} >$$

$$= 2 < \dot{v}, v^{\perp} >= - < L_{x}v, v > + < u, v^{\perp} >$$

$$\Rightarrow u_{i} = \begin{cases} -M \frac{v_{i}^{\perp}}{\|v_{i}^{\perp}\|} & \text{if } i \text{ is first } i : \|v_{i}^{\perp}\| = \max_{j=1,\dots,N} \|v_{j}^{\perp}\| \\ 0 & \text{otherwise} \end{cases}$$

is (one/the) maximizer under $\sum_{i=1}^{N} ||u_i(t)||_2 \leq \Theta$.

Maximizing the decay of V(t)

Maximizing the decay of V(t) with respect to the $\ell_1^N-\ell_2^d$ -norm constraint leads to the so-called shepherd dog (Schäferhund) strategy:

$$\begin{split} \frac{d}{dt}V(t) &= \frac{d}{dt} < v - \overline{v}, v - \overline{v} > = 2 < \frac{d}{dt}v^{\perp}, v^{\perp} > \\ &= 2 < \dot{v}, v^{\perp} > = - < L_{x}v, v > + < u, v^{\perp} > \\ &\Rightarrow u_{i} = \begin{cases} -M\frac{v_{i}^{\perp}}{\|v_{i}^{\perp}\|} & \text{if } i \text{ is first } i : \|v_{i}^{\perp}\| = \max_{j=1,\dots,N} \|v_{j}^{\perp}\| \\ 0 & \text{otherwise} \end{cases} \end{split}$$

is (one/the) maximizer under $\sum_{i=1}^{N} ||u_i(t)||_2 \leq \Theta$.

The control only acts on the most stubborn guy!

How to construct controls - Paradox of switching controls

The controls are defined pointwisely and influence the future. The following example shows the problem:

Assume u_1 is active for $[0, t] \Rightarrow v_1$ is nearer to \overline{v} at t/2 than $v_2 \times$

How to construct controls - Sample and Hold

Sample and Hold idea: First construct solutions with controls constant on intervals $[k\tau, (k+1)\tau]$ - time-sparse controls.

Recursive construction of the sampling solution:

As long as we are not in the consensus manifold at t=k au solve

$$\dot{z}(t) = f(z(t), u(z(k\tau))), \quad t \in [k\tau, (k+1)\tau]$$

with initial value $z(k\tau)$ and $u(k\tau)$ chosen as before.

Observe: The optimality criterion (decay of V(t)) doesn't hold anymore.

How to construct controls - Sample and Hold

Sample and Hold idea: First construct solutions with controls constant on intervals $[k\tau, (k+1)\tau]$ - time-sparse controls.

Recursive construction of the sampling solution:

As long as we are not in the consensus manifold at t=k au solve

$$\dot{z}(t) = f(z(t), u(z(k\tau))), \quad t \in [k\tau, (k+1)\tau]$$

with initial value $z(k\tau)$ and $u(k\tau)$ chosen as before.

Observe: The optimality criterion (decay of V(t)) doesn't hold anymore.

Theorem (Caponigro, Fornasier, Piccoli, Trelat)

For every Θ (constraint size) there exists $\tau_0 > 0$ such that for all sampling times $\tau \in [0, \tau_0]$ the sampling solution of the controlled Cucker-Smale system reaches the consensus region in finite time.

Convergence: Take the solutions x_{τ} with respect to the sampling time τ and let $\tau \to 0$. Prove that z_{τ} converges to a z in a suitable way.

$$z_{\tau} = z_0 + \int_0^t f(z_{\tau}(s)) + u_{\tau}(z_{\tau}(s)) ds.$$

Convergence: Take the solutions x_{τ} with respect to the sampling time τ and let $\tau \to 0$. Prove that z_{τ} converges to a z in a suitable way.

$$z_{\tau} = z_0 + \int_0^t f(z_{\tau}(s)) + u_{\tau}(z_{\tau}(s)) ds.$$

- \bullet z_{τ} are bounded on finite intervals (Gronwall estimate)
- $oldsymbol{3}$ z_{τ} converges by Arzela-Ascoli in $\mathcal C$ to $z\in \mathit{Lip}$.

*4

$$\int_0^t u_\tau(z_\tau(s)) \ ds \to y(t)$$

3 Since u_{τ} are bounded, y is absolutely continuous, can be written as

$$y(t) = \int_0^t u(s) \ ds.$$

1 Density argument: $u_{ au}(z(au))
ightarrow u$ weakly in L_1

A deeper argument shows: The limit control u is of the form

$$u_i = egin{cases} -lpha_i rac{v_i^{\perp}}{\|v_i^{\perp}\|} & ext{, if } \|v_i^{\perp}\| = \max_{j=1,\dots,N} \|v_j^{\perp}\| \ 0 & ext{, otherwise} \end{cases}$$

until reaching consensus region and minimizes the decay of V(t): It is possibly not sparse (Example!).

A deeper argument shows: The limit control u is of the form

$$u_i = egin{cases} -lpha_i rac{v_i^{\perp}}{\|v_i^{\perp}\|} & ext{, if } \|v_i^{\perp}\| = \max_{j=1,\dots,N} \|v_j^{\perp}\| \ 0 & ext{, otherwise} \end{cases}$$

until reaching consensus region and minimizes the decay of V(t): It is possibly not sparse (Example!).

Remarks and open problems:

- The time to consensus can be estimated from above depending on X(0), V(0) and the constraint Θ
- Greedy minimization may not be optimal
- What is the minimal time to consensus?
- How much control interactions are necessary?

How to construct controls - picture

Table of contents

- Introduction and classical results of the Cucker-Smale model
 - The general Cucker-Smale model
 - Pictures
 - Results on consensus
- Steering Cucker-Smale model to consensus using sparse control
 - Control of dynamical systems
 - Construction of sparse controls for dynamical systems
- 3 Dimension reduction of the Cucker-Smale model
 - Introduction high dimension
 - Dimension reduction and Johnson-Lindenstrauss matrices (JLM)
 - Can we use low-dimension information to find the right control?

Introduction

The case $N \to \infty$ (large number of agents) is widely considered in the literature:

- locations, velocities ⇒ density distributions
- dynamical system, ODE \Rightarrow PDE

Introduction

The case $N \to \infty$ (large number of agents) is widely considered in the literature:

- locations, velocities ⇒ density distributions
- dynamical system, ODE ⇒ PDE

The case $d \to \infty$ (high dimension/many coordinates/variables) is of our interest.

Example: Social movement (panic), Financial movement x not locations, more variables/state of the system (Health, pulse, strength; situation on the market, IFO-Index etc.)

- v describes the movement towards consensus
- ⇒ Goal: Panic prevention, Black Swan prevention

Johnson-Lindenstrauss matrices

The main tool is the dimension reduction by Johnson-Lindenstrauss:

Lemma (Johnson-Lindenstrauss matrices (JLM))

Let $x_1, ..., x_N$ be points in \mathbb{R}^d . Given $\varepsilon > 0$, there exists a constant $k_0 = \mathcal{O}(\varepsilon^{-2} \log N)$,

such that for all integers $k \ge k_0$ there exists a $k \times d$ matrix M for which

$$(1-\varepsilon)\|x_i\|^2 \le \|Mx_i\|^2 \le (1+\varepsilon)\|x_i\|^2$$
, for all $i = 1, ..., N$.

Johnson-Lindenstrauss matrices

The main tool is the dimension reduction by Johnson-Lindenstrauss:

Lemma (Johnson-Lindenstrauss matrices (JLM))

Let $x_1, ..., x_N$ be points in \mathbb{R}^d . Given $\varepsilon > 0$, there exists a constant $k_0 = \mathcal{O}(\varepsilon^{-2} \log N)$,

such that for all integers $k \ge k_0$ there exists a $k \times d$ matrix M for which

$$(1-\varepsilon)\|x_i\|^2 \le \|Mx_i\|^2 \le (1+\varepsilon)\|x_i\|^2$$
, for all $i = 1, ..., N$.

Remarks:

- M can be understood as a low-dimensional replacement for a projection onto $span\{x_1, \ldots, x_N\}$
- k_0 does not depend on the dimension, only logarithmically on the number of points N, usely $N \sim d^{\alpha} \Rightarrow$ logarithmically on d
- the construction of JLM uses random matrices, no deterministic construction known

How to reduce the dimension of the Cucker-Smale model

- M. Fornasier, J. Haskovec and J. Vybiral. Particle systems and kinetic equations modeling interacting agents in high dimension, 2011.
- ⇒ Reduction of the Cucker-Smale-like models without control.

$$egin{aligned} \dot{Mv_i}(t) &= rac{1}{N} \sum_{j=1}^N a(\|x_j(t) - x_i(t)\|) \cdot (Mv_j(t) - Mv_i(t)) \ &\sim rac{1}{N} \sum_{j=1}^N a(\|Mx_j(t) - Mx_i(t)\|) \cdot (Mv_j(t) - Mv_i(t)) \,. \end{aligned}$$

How to reduce the dimension of the Cucker-Smale model

M. Fornasier, J. Haskovec and J. Vybiral. Particle systems and kinetic equations modeling interacting agents in high dimension, 2011.

⇒ Reduction of the Cucker-Smale-like models without control.

$$egin{aligned} \dot{Mv_i}(t) &= rac{1}{N} \sum_{j=1}^N a(\|x_j(t) - x_i(t)\|) \cdot (Mv_j(t) - Mv_i(t)) \ &\sim rac{1}{N} \sum_{j=1}^N a(\|Mx_j(t) - Mx_i(t)\|) \cdot (Mv_j(t) - Mv_i(t)) \,. \end{aligned}$$

Idea: Consider a low-dimensional Cucker-Smale system in \mathbb{R}^k (low dimension JLM) with $(y_0, w_0) = (Mx_0, Mv_0)$ as initial values. They show:

JLM-projection of the high-dimensional system stays close to the low-dimensional system

or: first project, then dynamics \sim first dynamics, then project

First tool: A continuous Johnson-Lindenstrauss lemma

Lemma (Bongini, Fornasier, Scharf (BFS))

Let $\varphi:[0,1]\to\mathbb{R}^d$ be a Lipschitz function (bound L_{φ}), $0<\varepsilon<\varepsilon'<1$, $\delta>0$ and M be a Johnson-Lindenstrauss matrix in $\mathbb{R}^{k\times d}$ for

$$N \ge L_{\varphi} \frac{6d/k}{\delta(\varepsilon' - \varepsilon)}$$

points with high probability. Then for every $t \in [0,1]$ one of the following holds (with the same high probability):

$$(1-arepsilon')\|arphi(t)\| \leq \|Marphi(t)\| \leq (1+arepsilon')\|arphi(t)\|$$
 or $\|arphi(t)\| \leq \delta$ and $\|Marphi(t)\| \leq \delta$.

First tool: A continuous Johnson-Lindenstrauss lemma

Lemma (Bongini, Fornasier, Scharf (BFS))

Let $\varphi:[0,1]\to\mathbb{R}^d$ be a Lipschitz function (bound L_{φ}), $0<\varepsilon<\varepsilon'<1$, $\delta>0$ and M be a Johnson-Lindenstrauss matrix in $\mathbb{R}^{k\times d}$ for

$$N \ge L_{\varphi} \frac{6d/k}{\delta(\varepsilon' - \varepsilon)}$$

points with high probability. Then for every $t \in [0,1]$ one of the following holds (with the same high probability):

$$(1-arepsilon')\|arphi(t)\| \leq \|Marphi(t)\| \leq (1+arepsilon')\|arphi(t)\|$$
 or $\|arphi(t)\| \leq \delta$ and $\|Marphi(t)\| \leq \delta$.

Remarks: The original lemma of Fornasier, Haskovec, Vybiral assumed that φ has bounded curvature which is not given in the Cucker-Smale case.

What is the plan?

$$\begin{cases} \dot{x_i}(t) = v_i(t) \\ \dot{v_i}(t) = \frac{1}{N} \sum_{j=1}^{N} a(\|x_j(t) - x_i(t)\|) \cdot (v_j(t) - v_i(t)) + u_i(t). \end{cases}$$

- Project the high-dimensional initial values with JLM M to low-dimension
- ② Choose the index of sparse control $(u_i \neq 0)$ from the low-dimensional system and apply it to the high-dimensional system
- 3 Show: If the systems stay close to each other, then
 - either both systems are in consensus or
 - ▶ the control is reasonable for both systems (decay of V(t) is fast enough)

Norm estimates for high-dimensional control

Lemma (High-dimensional control is legit, BFS)

Le M be a Johnson-Lindenstrauss matrix with $\varepsilon=1/2$ and δ for the points a_i . Assume $\|Ma_i-b_i\|\leq \delta$. Let i be the smallest index such that $\|b_i\|\geq \|b_i\|$ and

$$A := \frac{1}{N} \sum_{j=1}^{N} \|a_j\|^2 \text{ and } B := \frac{1}{N} \sum_{j=1}^{N} \|b_j\|^2.$$

If $\sqrt{B} \ge 2\delta$, then (c indep. of d, N)

$$||a_i|| \geq \frac{||b_i||}{4}$$
, $||a_i|| \geq c \cdot \sqrt{A}$ and $B \leq 4NA$.

If $\sqrt{B} \le 2\delta$, then (C indep. of d, N)

$$\sqrt{A} < C\delta$$
.

The main result

Theorem (BFS)

Let $M \in \mathbb{R}^{k \times d}$ be a continuous Johnson-Lindenstrauss matrix for the distances of x(t), v(t) with ε and δ sufficiently (very, very) small. Choose the sparse control index according to the low k-dimensional Cucker-Smale system with initial values (Mx(0), Mv(0)).

Then for every Θ (constraint) and $\tau < \tau_0$ the sampling solution of the so controlled high-dimensional Cucker-Smale system reaches the consensus region in finite time.

Remarks:

- ullet ε and δ (and everything else) do not depend on d, but heavily on N
- If $\Theta >> 0$ and is constant with N, then ε can be choosen such that:

$$arepsilon \sim c rac{1}{{\sf Ne}^{{\sf N}/c}}$$

There is another problem...

In the theorem we suppose M is a JLM for the distances of x(t), v(t), but: The initial values of the low-dimensional system and hence the controls depend on M

 \Rightarrow the high-dimensional system depends on M: Vicious circle Solutions so far:

- take M as JLM for all possible trajectories, in principal $N^{T/\tau}$ possibilities where T is the time until consensus \Rightarrow we have to estimate the exponent T/τ , problematic
- use different matrices of the same dimension for every choice of the control (at $k\tau$) \Rightarrow a lot of matrix-vector multiplications in dimension d, since T/τ depends on N at least linearly right now

There is another problem...

In the theorem we suppose M is a JLM for the distances of x(t), v(t), but: The initial values of the low-dimensional system and hence the controls depend on M

 \Rightarrow the high-dimensional system depends on M: Vicious circle Solutions so far:

- take M as JLM for all possible trajectories, in principal $N^{T/\tau}$ possibilities where T is the time until consensus \Rightarrow we have to estimate the exponent T/τ , problematic
- use different matrices of the same dimension for every choice of the control (at $k\tau$) \Rightarrow a lot of matrix-vector multiplications in dimension d, since T/τ depends on N at least linearly right now

Thank you for your attention!