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Introduction Pointwise multipliers in function spaces Diffeomorphisms in function spaces

The problem setting

We want to observe the behaviour of the linear mappings

Pϕ : f 7→ ϕ · f

and

Dϕ : f 7→ f ◦ ϕ,

where f is an element of a function space (Besov, Triebel-Lizorkin
type) and ϕ is a suitably smooth function.

The aim:

If ϕ fulfils . . ., then Pϕ resp. Dϕ maps the function space A into A.
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The spaces C k

Let C k be the space of all k-times differentiable functions
f : Rn → R such that

‖f |C k‖ :=
∑
|α|≤k

sup |Dαf (x)| <∞.

Then

f , g ∈ C k ⇒ f · g ∈ C k and ‖f · g |C k‖ ≤ ck‖f |C k‖ · ‖g |C k‖

and

(∀f ∈ C k : f · g ∈ C k)⇒ g ∈ C k and ‖Pg : C k → C k‖ ≥ ‖g |C k‖.

Proof: Leibniz rule and 1 ∈ C k .
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The Hölder spaces Ck

Let 0 < σ ≤ 1 and f : Rn → R be continuous. We define

‖f |lipσ‖ := sup
x ,y∈Rn,x 6=y

|f (x)− f (y)|
|x − y |σ

,

Let s > 0 and s = bsc+ {s} with bsc ∈ Z and {s} ∈ (0, 1]. Then
the Hölder space with index s is given by

Cs =
{

f ∈ C bsc : ‖f |Cs‖ := ‖f |C bsc−‖+
∑
|α|=bsc

‖Dαf |lip{s}‖ <∞
}
.

It holds

f , g ∈ Cs ⇒ f · g ∈ Cs and ‖f · g |Cs‖ ≤ cs‖f |Cs‖ · ‖g |Cs‖.
and

(∀f ∈ Cs : f · g ∈ Cs)⇒ g ∈ Cs and ‖Pg : Cs → Cs‖ ≥ ‖g |Cs‖
Proof: Leibniz rule for Hölder spaces and 1 ∈ Cs .
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The Hölder spaces Ck

Let 0 < σ ≤ 1 and f : Rn → R be continuous. We define

‖f |lipσ‖ := sup
x ,y∈Rn,x 6=y

|f (x)− f (y)|
|x − y |σ

,

Let s > 0 and s = bsc+ {s} with bsc ∈ Z and {s} ∈ (0, 1]. Then
the Hölder space with index s is given by

Cs =
{

f ∈ C bsc : ‖f |Cs‖ := ‖f |C bsc−‖+
∑
|α|=bsc

‖Dαf |lip{s}‖ <∞
}
.

It holds

f , g ∈ Cs ⇒ f · g ∈ Cs and ‖f · g |Cs‖ ≤ cs‖f |Cs‖ · ‖g |Cs‖.
and

(∀f ∈ Cs : f · g ∈ Cs)⇒ g ∈ Cs and ‖Pg : Cs → Cs‖ ≥ ‖g |Cs‖
Proof: Leibniz rule for Hölder spaces and 1 ∈ Cs .
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The Lebesgue spaces Lp

Let 0 < p ≤ ∞ and Lp the usual set of equivalence classes of
measurable functions f with finite

‖f |Lp‖ :=

{(∫
Rn |f (x)|p dx

) 1
p , 0 < p <∞

ess sup |f (x)| , p =∞

Then

f ∈ Lp, g ∈ L∞ ⇒ f · g ∈ Lp and ‖f · g |Lp‖ ≤ ‖f |Lp‖ · ‖f |L∞‖

and

(∀f ∈ Lp : f · g ∈ Lp)⇒ g ∈ L∞ and ‖Pg : Lp → Lp‖ ≥ ‖g |L∞‖
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The Sobolev spaces W k
p (i)

Let 1 < p <∞, k ∈ N0 and W k
p the set of equivalence classes of

measurable functions f with finite

‖f |W k
p ‖ :=

∑
|α|≤k

‖Dαf (x)|Lp‖.

Then

f ∈W k
p , g ∈ C k ⇒ f · g ∈W k

p and ‖f · g |W k
p ‖ ≤ ‖f |W k

p ‖ · ‖f |C k‖.

The converse is not true!
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The Sobolev spaces W k
p (ii)

Theorem (Sobolev embedding)

Let k1 < k2 and k1 − n
p1
≤ k2 − n

p2
. Then

W k2
p2
↪→W k1

p1
.

Theorem (Multiplier algebra)

If k > n
p , then

‖f · g |W k
p ‖ ≤ ‖f |W k

p ‖ · ‖g |W k
p ‖.

Proof: We start with

‖Dα(f · g)|Lp‖ ≤ c
∑
‖(Dβf ) · (Dα−βg)‖Lp‖
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The Sobolev spaces W k
p (iii)

‖Dα(f · g)|Lp‖ ≤ c
∑
‖(Dβf ) · (Dα−βg)‖Lp‖

≤ c
∑
‖(Dβf )|Lp1‖ · ‖(Dα−βg)|Lp2‖

≤ c
∑
‖f |W |β|

p1 ‖ · ‖g |W
|α|−|β|
p2 ‖

≤ c ′‖f |W k
p ‖ · ‖g |W k

p ‖.

Here (|α| ≤ k)

1

p1
+

1

p2
=

1

p

|β| − n

p1
≤ k − n

p

|α| − |β| − n

p2
≤ k − n

p

This is possible, if k > n
p .
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The Sobolev spaces W k
p (iv)

Theorem (see e.g Runst and Sickel 1996)

The spaces W k
p ∩ L∞ are multiplier algebras, even

‖f · g |W k
p ‖ ≤ c

(
‖f |W k

p ‖ · ‖g |L∞‖+ ‖g |W k
p ‖ · ‖f |L∞‖

)

Theorem (see e.g. Triebel 2008)

If W k
p is a multiplier algebra, then ϕ is a pointwise multiplier for

W k
p iff

sup
m∈Z
‖ψ(· −m) · ϕ|W k

p ‖ <∞,

where ψ is a nonnegative C∞0 -function with∑
m

ψ(x −m) = 1 for x ∈ Rn.
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Resolution of unity

Let ϕ0 ∈ S(Rn) such that supp ϕ0 ⊂
{
|x | ≤ 3

2

}
and ϕ0(x) = 1 for

|x | ≤ 1. We define

ϕ(x) := ϕ0(x)− ϕ0(2x) and ϕj(x) := ϕ(2−jx) for j ∈ N.

Then we have

∞∑
j=0

ϕj(x) = 1.

|Dαϕj(x)| ≤ cα2−j |α|,

supp ϕj ⊂
{

2j−1 ≤ |x | ≤ 2j+1
}
,

(1)

A sequence of functions {ϕj}∞j=0 with (1), ϕj ∈ S(Rn) and ϕ0 as
above will be called resolution of unity.
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The definition of B s
p,q(Rn)

Let {ϕj}∞j=0 be a resolution of unity. Let 0 < p ≤ ∞, 0 < q ≤ ∞
and s ∈ R. For f ∈ S ′(Rn) we define

‖f |Bs
p,q(Rn)‖ϕ :=

 ∞∑
j=0

2jsq‖(ϕj f̂ )̌ |Lp‖q
 1

q

(modified in case q =∞) and

Bs,ϕ
p,q (Rn) :=

{
f ∈ S ′(Rn) : ‖f |Bs

p,q(Rn)‖ϕ <∞
}
.

Then (Bs,ϕ
p,q (Rn), ‖ · |Bs

p,q(Rn)‖ϕ) is a quasi-Banach space. It does
not depend on the choice of the resolution of unity {ϕj}∞j=0 in the
sense of equivalent norms. So we denote it shortly by Bs

p,q(Rn).
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The definition of F s
p,q(Rn)

Let {ϕj}∞j=0 be a resolution of unity. Let 0 < p <∞, 0 < q ≤ ∞
and s ∈ R. For f ∈ S ′(Rn) we define

‖f |F s
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∥∥∥∥∥∥∥
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 1

q ∣∣∣Lp

∥∥∥∥∥∥∥
(modified in case q =∞) and
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p,q (Rn) :=

{
f ∈ S ′(Rn) : ‖f |F s
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}
.

Then (F s,ϕ
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Atomic characterization of B s
p,q(Rn)

Theorem

Let 0 < p ≤ ∞, 0 < q ≤ ∞ and s ∈ R. Let K , L ≥ 0, K > s and
L > σp − s. Then f ∈ S ′(Rn) belongs to Bs

p,q(Rn) if and only if it
can be represented as

f =
∞∑
ν=0

∑
m∈Zn

λν,m · aν,m with convergence in S ′(Rn).

Here aν,m are (s, p)K ,L-atoms located at Qν,m and ‖λ|bp,q‖ <∞ .
Furthermore, we have in the sense of equivalence of norms

‖f |Bs
p,q(Rn)‖ ∼ inf ‖λ|bp,q‖,

where the infimum on the right-hand side is taken over all
admissible representations of f .
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Treatment of products using atomic decompositions

f ∈ As
p,q(Rn)

↓

f =
∞∑
ν=0

∑
m∈Zn

λν,m · aν,m

↓

ϕ · f =
∞∑
ν=0

∑
m∈Zn

λν,m · ϕ · aν,m

↓

If ϕ · aν,m are atoms: ϕ · f ∈ As
p,q(Rn)
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The definition of atoms

A function a : Rn → R is called classical (s, p)K ,L-atom located at
Qν,m if

supp a ⊂ d · Qν,m

|Dαa(x)| ≤ C · 2−ν
(
s− n

p

)
+|α|ν

for all |α| < K + 1, (2)∫
Rn

xβa(x) dx = 0 for all |β| < L. (3)

A function a : Rn → R is called (s, p)K ,L-atom located at Qν,m if
instead of (2) and (3) it holds (for all ψ ∈ CL)

‖a(2−ν ·)|CK‖ ≤ C · 2−ν(s− n
p

)∣∣∣∣∣
∫
d ·Qν,m

ψ(x)a(x) dx

∣∣∣∣∣ ≤ C · 2−ν
(
s+L+n

(
1− 1

p

))
‖ψ|CL‖
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Atomic representations revisited

Every classical (s, p)K ,L-atom is an (s, p)K ,L-atom.

Theorem

The atomic representation theorem for Bs
p,q(Rn) and F s

p,q(Rn) is
valid with both forms of atoms. Hence every f which can be
represented as a linear combination of classical (s, p)K ,L-atom resp.
(s, p)K ,L-atom belongs to Bs

p,q(Rn) resp. F s
p,q(Rn). Hereby

K > s and

L > σp − s = σp = n

(
1

p
− 1

)
+

− s resp.

L > σp,q − s = n

(
1

min(p, q)
− 1

)
+

− s

The proof for classical atoms goes back to Triebel ’97. The modifi-
cations were suggested by Skrzypczak ’98, Triebel/Winkelvoss ’96.
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The pointwise multiplier theorem (i)

Now we get

Lemma

There exists a constant c with the following property: For all
ν ∈ N0, m ∈ Z, all (s, p)K ,L-atoms aν,m with support in d · Qν,m

and all ϕ ∈ C ρ with ρ ≥ max(K , L) the product

c · ‖ϕ|Cρ‖−1 · ϕ · aν,m

is an (s, p)K ,L-atom with support in d · Qν,m.

Proof: Use that Cρ is a multiplication algebra.

This does not work for classical atoms (s, p)K ,L-atoms with L ≥ 1,
since in general moment conditions are destroyed when multiplying
by ϕ!
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The pointwise multiplier theorem (ii)

We get as a Corollary

Theorem

Let s ∈ R and 0 < q ≤ ∞.
(i) Let 0 < p ≤ ∞ and ρ > max(s, σp − s). Then there exists a
positive number c such that

‖ϕf |Bs
p,q(Rn)‖ ≤ c‖ϕ|Cρ‖ · ‖f |Bs

p,q(Rn)‖

for all ϕ ∈ Cρ and all f ∈ Bs
p,q(Rn).

(ii) Let 0 < p <∞ and ρ > max(s, σp,q − s). Then there exists a
positive number c such that

‖ϕf |F s
p,q(Rn)‖ ≤ c‖ϕ|Cρ‖ · ‖f |F s

p,q(Rn)‖

for all ϕ ∈ Cρ and all f ∈ F s
p,q(Rn).
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The diffeomorphism theorem (i)

In the same way we can treat the mapping Dϕ:

f =
∞∑
ν=0

∑
m∈Zn

λν,m · aν,m ⇒ f ◦ ϕ =
∞∑
ν=0

∑
m∈Zn

λν,m · (aν,m ◦ ϕ).

Hence we have to investigate if aν,m ◦ ϕ is an (s, p)K ,L-atom when
aν,m is an (s, p)K ,L-atom.

Definition

Let ρ ≥ 1. We say that the one-to-one mapping ϕ : Rn → Rn is a
ρ-diffeomorphism if the components of ϕ(x) = (ϕ1(x), . . . , ϕn(x))
have classical derivatives up to order brc with ∂ϕ

∂xj
∈ Cρ−1 and if

| detϕ∗| ≥ c > 0 for some c and all x ∈ Rn. Here ϕ∗ stands for
the Jacobian matrix.
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The diffeomorphism theorem (ii)

Theorem

(i) Let 0 < p ≤ ∞, ρ ≥ 1 and ρ > max(s, σp − s). If ϕ is a
ρ-diffeomorphism, then there exists a constant c such that

‖f (ϕ(·))|Bs
p,q(Rn)‖ ≤ c‖f |Bs

p,q(Rn)‖.

for all f ∈ Bs
p,q(Rn). Hence Dϕ maps Bs

p,q(Rn) onto Bs
p,q(Rn).

(ii) Let 0 < p <∞, ρ ≥ 1 and ρ > max(s, σp,q − s). If ϕ is a
ρ-diffeomorphism, then there exists a constant c such that

‖f (ϕ(·))|F s
p,q(Rn)‖ ≤ c‖f |F s

p,q(Rn)‖.

for all f ∈ F s
p,q(Rn). Hence Dϕ maps F s

p,q(Rn) onto F s
p,q(Rn).

Proof: Show that aν,m is an (s, p)K ,L-atom and control the
support of the atoms.
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The end

Thank you for your attention

Questions?
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